Journal of Biosciences

, 44:12 | Cite as

G-quadruplex forming region within WT1 promoter is selectively targeted by daunorubicin and mitoxantrone: A possible mechanism for anti-leukemic effect of drugs

  • Saeedeh Ghazaey Zidanloo
  • Abasalt Hosseinzadeh ColagarEmail author
  • Hossein Ayatollahi
  • Zahra Bagheryan


Wilms tumor 1 (WT1) has long been overexpressed in acute myeloid leukemia and has a prognostic value in its diagnosis. Lately, the formation of G-quadruplexes in oncogenic promoters like WT1 has been widely investigated since stabilization of these structures leads to transcriptional inhibition of the oncogene. Daunorubicin and mitoxantrone considered as crucial components of almost all standard acute myeloid leukemia induction regimens. Herein we have proposed a probable molecular mechanism of action through which the drugs may stabilize WT1 promoter G-quadruplexes. Differential pulse voltammetry, circular dichroism, and polyacrylamide gel electrophoresis, electrophoretic mobility shifts assay, polymerase chain reaction (PCR) stop assays, and quantitative RT-PCR were performed in order to better understanding the nature of interactions between the drugs and G-quadruplexes. Data revealed that both drugs had potential to stabilize G-quadruplexes and down-regulate WT1 transcription but daunorubicin exposed more silencing impact. The results illustrated the therapeutic association of these two commercial FDA-approved drugs in WT1 transcriptional down-regulation. Since WT1 has known as a transcriptional regulator of at least 137 target genes, so the new data are significant for the development of new approaches to regulating WT1 and other target genes by employing special drugs in cancer treatment.


Daunorubicin mitoxantrone promoter G-quadruplexes WT1 down-regulation 



We would like to acknowledge the helpful comments of Prof. Jahan-bakhsh Raoof on this study.


  1. Balasubramanian S, Hurley LH and Neidle S 2011 Targeting G-quadruplexes in gene promoters: a novel anticancer strategy? Nat. Rev. Drug Discov. 10 261–275CrossRefGoogle Scholar
  2. Bassam BJ and Gresshoff PM 2007 Silver staining DNA in polyacrylamide gels. Nat. Protoc. 2 2649–2654Google Scholar
  3. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA, Rose EA, Kral A, Yeger H, Lewis WH, and Jones C 1990 Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60 509–520CrossRefGoogle Scholar
  4. Casagrande V, Salvati E, Alvino A, Bianco A, Ciammaichella A, D’Angelo C, Ginnari-Satriani L, Serrilli AM, Iachettini S, Leonetti C and Neidle S 2011 N-cyclic bay-substituted perylene G-quadruplex ligands have selective antiproliferative effects on cancer cells and induce telomere damage. J. Med. Chem. 54 1140-56CrossRefGoogle Scholar
  5. Chong CR, Sullivan Jr 2007 New uses for old drugs. Nature 448 645–646CrossRefGoogle Scholar
  6. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, Rege-Cambrin G, Guerrasio A, Divona M, Coco FL and Saglio G 2002 Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia 16 2115–2121CrossRefGoogle Scholar
  7. Cilloni D, Renneville A, Hermitte F Hills RK, Daly S, Jovanovic JV, Gottardi E, Fava M, Schnittger S, Weiss T and Izzo B 2009 Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: A European Leukemia Net study. J. Clin. Oncol. 27 5195–5201Google Scholar
  8. Clark GR, Pytel PD, Squire CJ and Neidle S 2003 Structure of the first parallel DNA quadruplex-drug complex. J. Am. Chem. Soc. 125 4066–4067CrossRefGoogle Scholar
  9. Cogoi S and Xodo LE 2006 G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription. Nucleic Acids Res. 34 2536–2549Google Scholar
  10. Collie GW, Promontorio R, Hampel SM, Micco M, Neidle S and Parkinson GN 2012 Structural basis for telomeric G-quadruplex targeting by naphthalene diimide ligands. J. Am. Chem. Soc. 134 2723–2731CrossRefGoogle Scholar
  11. De Armond R, Wood S, Sun D, Hurley LH and Ebbinghaus SW 2005 Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1α promoter. Biochem. 44 16341–16350CrossRefGoogle Scholar
  12. Di Leva FS, Zizza P, Cingolani C, D’Angelo C, Pagano B, Amato J, Salvati E, Sissi C, Pinato O, Marinelli L and Cavalli A 2013 Exploring the chemical space of G-quadruplex binders: discovery of a novel chemotype targeting the human telomeric sequence. J. Med. Chem. 56 9646–9654CrossRefGoogle Scholar
  13. DiMasi JA, Hansen RW and Grabowski HG 2003The price of innovation: new estimates of drug development costs. J. Health Econ. 22 151–185CrossRefGoogle Scholar
  14. Fernando H, Reszka AP, Huppert J, Ladame S, Rankin S, Venkitaraman AR, Neidle S and Balasubramanian S 2006 A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene. Biochemistry 45 7854–7860CrossRefGoogle Scholar
  15. Fraizer GC, Wu YJ, Hewitt SM, Maity T, Ton CC, Huff V and Saunders GF 1994 Transcriptional regulation of the humanWilms’ tumor gene (WT1). Cell type-specific enhancer and promiscuous promoter. J. Biol. Chem. 269 8892–8900PubMedGoogle Scholar
  16. Garg M, Moore H, Tobal Kand Liu Yin JA 2003 Prognostic significance of quantitative analysis of WT1 gene transcripts by competitive reverse transcription polymerase chain reaction in acute leukaemia. Br. J. Haematol. 123 49–59Google Scholar
  17. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH and Bruns GA 1990 Homozygous deletion in Wilms’tumors of a zinc-finger gene identified by chromosome jumping. Nature (Lond) 343 774–778CrossRefGoogle Scholar
  18. Ghazaey Zidanloo S and Hosseinzadeh Colagar A 2014 Geographic heterogeneity of the AML1-ETO fusion gene in Iranian patients with acute myeloid leukemia. RBMB 3 1–7Google Scholar
  19. Ghazaey Zidanloo S and Jafarzadeh Hesari M 2018 In silico screening of G-quadruplex structures in Wilms tumor 1 gene promoter. J. North Khorasan Univ. Med. Sci. Google Scholar
  20. Ghazaey Zidanloo S, Hosseinzadeh CA, Ayatollahi H, Raoof JB 2016 Down-regulation of the WT1 gene expression via TMPyP4 stabilization of promoter G-quadruplexes in leukemia cells. Tumor Biol. 37 1–11Google Scholar
  21. Glienke W, Maute L, Koehl U, Esser R, Milz E and Bergmann L 2007 Effective treatment of leukemic cell lines with wt1 siRNA. Leukemia 21 2164–2170CrossRefGoogle Scholar
  22. Hamon F, Largy E, Guédin-Beaurepaire A, Rouchon‐Dagois M, Sidibe A, Monchaud D, Mergny JL, Riou JF, Nguyen CH and Teulade‐Fichou MP 2011 An acyclic oligoheteroaryle that discriminates strongly between diverse G-quadruplex topologies. Angewandte Chemie. 123 8904–8908CrossRefGoogle Scholar
  23. Haudecoeur R, Stefan L, Denat F and Monchaud D 2013 A model of smart G-quadruplex ligand. J. Am. Chem. Soc. 135 550–553CrossRefGoogle Scholar
  24. Hurley LH, Von Hoff DD, Siddiqui-Jain A and Yang D 2006 Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin. Oncol. 33 498–512CrossRefGoogle Scholar
  25. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, Kita K, Hiraoka A, Masaoka T and Nasu K 1994 WT1 as new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 84 3071–3079PubMedGoogle Scholar
  26. Jin Y and Qiao Y 2010 A label-free method for identifying electroactive G-quadruplex-binding ligand. Electrochem. Commun. 12 966–969CrossRefGoogle Scholar
  27. Kikin O, D’Antonio L and Bagga PS 2006 QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34 W676–W682CrossRefGoogle Scholar
  28. Liu Y, Peacey E, Dickson J, Donahue CP, Zheng S, Varani G and Wolfe MS 2009 Mitoxantrone Analogues as Ligands for a Stem− Loop Structure of Tau Pre-mRNA. J. Med. Chem. 52 6523–6526CrossRefGoogle Scholar
  29. Monchaud D and Teulade-Fichou MP 2008 A hitchhiker’s guide to G-quadruplex ligands. Org. Biomol. Chem. 6 627–636CrossRefGoogle Scholar
  30. Nicoludis JM, Miller ST, Jeffrey PD, Barrett SP, Rablen PR, Lawton TJ and Yatsunyk LA 2012 Optimized end-stacking provides specificity of N-methyl mesoporphyrin IX for human telomeric G-quadruplex DNA. J. Am. Chem. Soc. 134 20446–20456CrossRefGoogle Scholar
  31. Ogawa H, Tamaki H, Ikegame K, Soma T, Kawakami M, Tsuboi A, Kim EH, Hosen N, Murakami M, Fujioka T and Masuda T 2003 The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood 101 1698–1704CrossRefGoogle Scholar
  32. Ostergaard M, Olesen LH, Hasle H, Kjeldsen E and Hokland P 2004 WT1 gene expression: an excellent tool for monitoring minimal residual disease in 70% of acute myeloid leukaemia patients—results from a single-centre study. Br. J. Haematol. 125 590–600CrossRefGoogle Scholar
  33. Patel DJ, Phan AT and Kuryavyi V 2007 Human telomere, oncogenic promoter and 5’-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res. 35 7429–7455CrossRefGoogle Scholar
  34. Pradeep TP and Barthwal R 2016 NMR structure of dual site binding of mitoxantrone dimer to opposite grooves of parallel stranded G-quadruplex [d-(TTGGGGT)]4. Biochimie 128 59–69CrossRefGoogle Scholar
  35. Qi XW, Zhang F, Wu H, Liu JL, Zong BG, Xu C and Jiang J 2015 Wilms’tumor1 (WT1) expression and prognosis in solid cancer patients: a systematic review and meta-analysis. Sci. Rep. 5 8924CrossRefGoogle Scholar
  36. Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, Ladame S, Balasubramanian S and Neidle S 2005 Putative DNA quadruplex formation within the human ckit oncogene. J. Am. Chem. Soc. 127 10584–10589CrossRefGoogle Scholar
  37. Rodriguez R, Müller S, Yeoman JA, Trentesaux C, Riou JF and Balasubramanian S 2008 A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J. Am. Chem. Soc. 130 15758–15759CrossRefGoogle Scholar
  38. Siddiqui-Jain A, Grand CL, Bearss DJ and Hurley LH 2002 Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. 99 11593–11598CrossRefGoogle Scholar
  39. Sun D, Guo K and Rusche JJ Hurley LH 2005 Facilitation of a structural transition in the polypurine/polypyrimidine tract within the proximal promoter region of the human VEGF gene by the presence of potassium and G-quadruplex-interactive agents. Nucleic Acids Res. 33 6070–6080CrossRefGoogle Scholar
  40. Tallman MS, Gilliland DG and Rowe JM 2005 Drug therapy for acute myeloid leukemia. Blood 106 1154–1163CrossRefGoogle Scholar
  41. Tamaki H, Ogawa H, Ohyashiki K, Ohyashiki JH, Iwama H, Inoue K, Soma T, Oka Y, Tatekawa T, Oji Y and Tsuboi A 1999 The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 13 393–399CrossRefGoogle Scholar
  42. Tatsumi N, Oji Y, Tsuji N, Tsuda A, Higashio M, Aoyagi S, Fukuda I, Ito K, Nakamura J, Takashima S and Kitamura Y 2008 Wilms’tumor gene WT1-shRNA as a potent apoptosis inducing agent for solid tumors. Int. J. Oncol. 32 701–711Google Scholar
  43. Toska E and Roberts SG 2014 Mechanisms of transcriptional regulation by WT1 (Wilms’ tumour 1). Biochem. J. 461 15–32CrossRefGoogle Scholar
  44. Wagner KD, Cherfils-Vicini J, Hosen N, Hohenstein P, Gilson E, Hastie ND, Michiels JF, and Wagner N 2014 The Wilms’ tumour suppressor Wt1 is a major regulator of tumour angiogenesis and progression. Nat. Commun. 5 5852CrossRefGoogle Scholar
  45. Xiong YX, Chen AC, Yao PF, Zeng DY, Lu YJ, Tan JH, Huang ZS andOu TM 2016 Blocking the binding of WT1 to bcl-2 promoter by G-quadruplex ligand SYUIQ-FM05. Biochem. Biophys. Rep. 5 346–352PubMedPubMedCentralGoogle Scholar
  46. Yang L, Han Y, Saiz FS and Minden MD 2007 A tumors uppressor and oncogene: the WT1 story. Leukemia 21 868–876CrossRefGoogle Scholar
  47. Zhang R, Lin Yand Zhang CT 2008 Greglist: a database listing potential G-quadruplex regulated genes. Nucleic Acids Res. 36 D372–D376Google Scholar
  48. Zhang Z, He X andYuan G 2011 Regulation of the equilibrium between Gquadruplex and duplex DNA in promoter of human c-myc oncogene by a pyrene derivative. Int. J. Biol. Macromol. 49 1173–1176CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Saeedeh Ghazaey Zidanloo
    • 1
    • 2
  • Abasalt Hosseinzadeh Colagar
    • 1
    Email author
  • Hossein Ayatollahi
    • 3
  • Zahra Bagheryan
    • 4
  1. 1.Department of Molecular and Cell Biology, Faculty of Basic SciencesUniversity of MazandaranBabolsarIran
  2. 2.Department of Molecular and Cell Biology, Faculty of Basic SciencesKosar University of BojnordBojnordIran
  3. 3.Cancer Molecular Pathology Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Eletroanalytical Chemistry Research Laboratory, Analytical Chemistry Department of Faculty of ChemistryMazandaran UniversityBabolsarIran

Personalised recommendations