Journal of Biosciences

, 44:25 | Cite as

Decoding the biology of language and its implications in language acquisition

  • D R Rahul
  • R Joseph PonniahEmail author


Associating human genetic makeup with the faculty of language has long been a goal for biolinguistics. This stimulated the idea that language is attributed to genes and language disabilities are caused by genetic mutations. However, application of genetic knowledge on language intervention is still a gap in the existing literature. In an effort to bridge this gap, this article presents an account of genetic and neural associations of language and synthesizes the genetic, neural, epigenetic and environmental facets involved in language. In addition to describing the association of genes with language, the neural and epigenetic aspects of language are also explored. Further, the environmental aspects of language such as language input, emotion and cognition are also traced back to gene expressions. Therefore, effective language intervention for language learning difficulties must offer genetics-informed solutions, both linguistic and medical.


Effective intervention epigenetics FOXP2 genetics language genes neuroscience 



  1. Amarillo IE, Li WL, Li X, Vilain E and Kantarci S 2014 De novo single exon deletion of AUTS2 in a patient with speech and language disorder: a review of disrupted AUTS2 and further evidence for its role in neurodevelopmental disorders. Am. J. Med. Genet. 164 958–965CrossRefGoogle Scholar
  2. Bates TC, Luciano M, Medland SE, Montgomery GW, Wright MJ and Martin NG 2011 Genetic variance in a component of the language acquisition device: ROBO1 polymorphisms associated with phonological buffer deficits. Behav. Genet. 41 50–57PubMedCrossRefGoogle Scholar
  3. Binder JR, Frost JA, Hammeke TA, Cox RW, Rao SM and Prieto T 1997 Human brain language areas identified by functional magnetic resonance imaging. J. Neurosci. 17 353–362PubMedCrossRefGoogle Scholar
  4. Binder JR, Swanson SJ, Hammeke TA, Morris GL, Mueller WM, Fischer M, et al. 1996 Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46 978–984PubMedCrossRefGoogle Scholar
  5. Chang H, Hoshina N, Zhang C, Ma Y, Cao H, Wang Y, et al. 2017 The protocadherin 17 gene affects cognition, personality, amygdala structure and function, synapse development and risk of major mood disorders. Mol. Psychiatry 23 1–13Google Scholar
  6. Chen XS, Reader RH, Hoischen A, Veltman JA, Simpson NH, Francks C, et al. 2017 Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci. Rep. 7 1–17CrossRefGoogle Scholar
  7. Cortés-Mendoza J, Díaz de León-Guerrero S, Pedraza-Alva G and Pérez-Martínez L 2013 Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription. Int. J. Dev. Neurosci. 31 359–369PubMedCrossRefGoogle Scholar
  8. Crain S, Koring L and Thornton R 2017 Language acquisition from a biolinguistic perspective. Neurosci. Biobehav. Rev. 81 120–149PubMedCrossRefGoogle Scholar
  9. Deffenbacher K, Kenyon J, Hoover D, Olson R, Pennington B, DeFries J and Smith S 2004 Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses. Hum. Genet. 115 128–138PubMedCrossRefGoogle Scholar
  10. Deters KD, Nho K, Risacher SL, Kim, Ramanan VK, Crane PK, et al. 2017 Genome-wide association study of language performance in Alzheimer’s disease. Brain Lang. 172 22–29PubMedPubMedCentralCrossRefGoogle Scholar
  11. Filges I, Shimojima K, Okamoto N, Röthlisberger B, Weber P, Huber AR, et al. 2011 Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J. Med. Genet. 48 117–122PubMedCrossRefGoogle Scholar
  12. Fisher SE, Marlow AJ, Lamb J, Maestrini E, Williams DF, Richardson AJ, et al. 1999 A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am. J. Hum. Genet. 64 146–156PubMedPubMedCentralCrossRefGoogle Scholar
  13. Gabrieli JDE 2009 Dyslexia: a new synergy between education and cognitive neuroscience. Science 325 280–283PubMedCrossRefGoogle Scholar
  14. Gabrieli JDE, Ghosh SS and Whitfield-Gabrieli S 2015 Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85 11–26PubMedPubMedCentralCrossRefGoogle Scholar
  15. Gayán J, Smith SD, Cherny SS, Cardon LR, Fulker DW, Brower AM, et al. 1999 Quantitative-trait locus for specific language and reading deficits on chromosome 6p. Am. J. Hum. Genet. 64 157–164PubMedPubMedCentralCrossRefGoogle Scholar
  16. Gialluisi A, Guadalupe T, Francks C and Fisher SE 2017 Neuroimaging genetic analyses of novel candidate genes associated with reading and language. Brain Lang. 172 9–15PubMedCrossRefGoogle Scholar
  17. Guan Z, Giustetto M, Lomvardas S, Kim JH, Miniaci MC, Schwartz JH, et al. 2002 Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 111 483–493PubMedCrossRefGoogle Scholar
  18. Haga SB, and Burke W 2004 Using pharmacogenetics to improve drug safety and efficacy. JAMA 291 2869–2871PubMedCrossRefGoogle Scholar
  19. Heerboth S, Lapinska K, Snyder N, Leary M, Rollinson S and Sarkar S 2014 Use of epigenetic drugs in disease: an overview. Genet. Epigenet. 1 9–19Google Scholar
  20. Hoff E 2003 The specificity of environmental influence: socioeconomic status affects early vocabulary development via maternal speech. Child Dev. 74 1368–1378PubMedCrossRefGoogle Scholar
  21. Isgett SF, Algoe SB, Boulton AJ, Way BM and Fredrickson BL 2016 Common variant in OXTR predicts growth in positive emotions from loving-kindness training. Psychoneuroendocrinology 73 244–251PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kaplan DE, Gayán J, Ahn J, Won TW, Pauls D, Olson RK, et al. 2002 Evidence for linkage and association with reading disability on 6p21.3-22. Am. J. Hum. Genet. 70 1287–1298PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kim SY, Liu L and Cao F 2017 How does first language (L1) influence second language (L2) reading in the brain? Evidence from Korean-English and Chinese-English bilinguals. Brain Lang. 171 1–13PubMedCrossRefGoogle Scholar
  24. Krashen SD 1982 Principles and practice in second language acquisition (Oxford: Pergamon Press Inc.)Google Scholar
  25. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F and Monaco AP 2001 A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413 519–523PubMedCrossRefGoogle Scholar
  26. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. 2013 GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat. Genet. 45 1061–1066PubMedCrossRefGoogle Scholar
  27. Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P, et al. 2006 Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J. Biol. Chem. 281 15763–15773PubMedCrossRefGoogle Scholar
  28. Liégeois F, Baldeweg T, Connelly A, Gadian DG, Mishkin M and Vargha-Khadem F 2003 Language fMRI abnormalities associated with FOXP2 gene mutation. Nat. Neurosci. 6 1230–1237PubMedCrossRefGoogle Scholar
  29. Lipsky RH 2013 Epigenetic mechanisms regulating learning and long-term memory. Int. J. Dev. Neurosci. 31 535–358CrossRefGoogle Scholar
  30. Liu K X, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE and Oliver PL 2015 Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 138 1167–1181PubMedPubMedCentralCrossRefGoogle Scholar
  31. Marseglia G, Scordo MR, Pescucci C, Nannetti G, Biagini E, Scandurra V, et al. 2012 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. Eur. J. Med. Genet. 55 216–221PubMedCrossRefGoogle Scholar
  32. Martin RC 2003 Language processing: functional organization and neuroanatomical basis. Annu. Rev. Psychol. 54 55–89PubMedCrossRefGoogle Scholar
  33. Mascheretti S, Bureau A, Battaglia M, Simone D, Quadrelli E, Croteau J, et al. 2013 An assessment of gene-by-environment interactions in developmental dyslexia-related phenotypes. Genes Brain Behav. 12 47–55PubMedCrossRefGoogle Scholar
  34. Meyer M, Alter K, Friederici AD, Lohmann G and Von Cramon DY 2002 FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum. Brain Map. 17 73–88CrossRefGoogle Scholar
  35. Meyer UA 2000 Pharmacogenetics and adverse drug reactions. Lancet 356 1667–1671PubMedCrossRefGoogle Scholar
  36. Miller CA, and Sweatt JD 2007 Covalent modification of DNA regulates memory formation. Neuron 53 857–869PubMedPubMedCentralCrossRefGoogle Scholar
  37. Morgan AT, Mei C, Da Costa A, Fifer J, Lederer D, Benoit V, et al. 2015 Speech and language in a genotyped cohort of individuals with Kabuki syndrome. Am. J. Med. Genet. Part A 167 1483–1492PubMedCrossRefGoogle Scholar
  38. Morris MJ and Monteggia LM 2013 Unique functional roles for class I and class II histone deacetylases in central nervous system development and function. Int. J. Dev. Neurosci. 31 370–381PubMedPubMedCentralCrossRefGoogle Scholar
  39. Nathanson KN, Wooster R and Weber BL 2001 Breast cancer genetics: what we know and what we need. Nat. Med. 7 552–556PubMedCrossRefGoogle Scholar
  40. Newbury DF, Bonora E, Lamb JA, Fisher SE, Lai CSL, Baird G, et al. 2002 FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am. J. Hum. Genet. 70 1318–1327PubMedPubMedCentralCrossRefGoogle Scholar
  41. Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL, Clark A, et al. 2009 CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am. J. Hum. Genet. 85 264–272PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ocklenburg S, Arning L, Hahn C, Gerding WM, Epplen JT, Güntürkün O and Beste C 2011 Variation in the NMDA receptor 2B subunit gene GRIN2B is associated with differential language lateralization. Behav. Brain Res. 225 284–289PubMedCrossRefGoogle Scholar
  43. Peñagarikano O, Abrahams BS, Herman EI, Winden KC, Gdalyahu A, Dong H, et al. 2011 Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities and core autism-related deficits. Cell 147 235–246PubMedPubMedCentralCrossRefGoogle Scholar
  44. Perani D and Abutalebi J 2005 The neural basis of first and second language processing. Curr. Opin. Neurobiol. 15 202–206PubMedCrossRefGoogle Scholar
  45. Perani D, Paulesu E, Galles NS, Dupoux E, Dehaene S, Bettinardi V, et al. 1998 The bilingual brain. Proficiency and age of acquisition of the second language. Brain 121 1841–1852PubMedCrossRefGoogle Scholar
  46. Price CJ 2000 The anatomy of language: contributions from functional neuroimaging. J. Anat. 197 335–359PubMedPubMedCentralCrossRefGoogle Scholar
  47. Rasool M, Malik A, Naseer MI, Manan A, Ansari SA, Begum I, et al. 2015 The role of epigenetics in personalized medicine: challenges and opportunities. BMC Med. Genom. 8 S5CrossRefGoogle Scholar
  48. Reich P A and Richards B A 2004 Epigenetics and language: the minimalist program, connectionism, and biology. Linguist Atl. 25 7–21Google Scholar
  49. Scerri TS, Morris AP, Buckingham LL, Newbury DF, Miller LL, Monaco AP, et al. 2011 DCDC2 KIAA0319 and CMIP are associated with reading-related traits. Biol. Psychiatry 70 237–245PubMedPubMedCentralCrossRefGoogle Scholar
  50. Schmitz J, Kumsta R, Moser D, Güntürkün O and Ocklenburg S 2018 KIAA0319 promoter DNA methylation predicts dichotic listening performance in forced-attention conditions. Behav. Brain Res. 337 1–7PubMedCrossRefGoogle Scholar
  51. Sweatt JDJ 2009 Experience-dependent epigenetic modifications in the central nervous system. Biol. Psychiatry 65 191–197PubMedCrossRefGoogle Scholar
  52. Szyf M, McGowan P and Meaney MJ 2008 The social environment and the epigenome. Environ. Mol. Mutagenesis 49 46–60CrossRefGoogle Scholar
  53. Taylor CF, Charlton RS, Burn J, Sheridan E, and Taylor GR 2003 Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum. Mutat. 22 428–433PubMedCrossRefGoogle Scholar
  54. Thevenon J, Callier P, Andrieux J, Delobel B, David A, Sukno S, et al. 2013 12p13.33 microdeletion including ELKS/ERC1 a new locus associated with childhood apraxia of speech. Eur. J. Hum. Genet. 21 82–88PubMedCrossRefGoogle Scholar
  55. Vannest J, Karunanayaka PR, Schmithorst VJ, Szaflarski JP and Holland SK 2009 Language networks in children: evidence from functional MRI studies. Am. J. Roentgenol. 192 1190–1196CrossRefGoogle Scholar
  56. Vernes SC and Fisher SE 2013 Genetic pathways implicated in speech and language; in Animal models of speech and language disorders. SA Helekar (ed) (New York: Springer Science+Business Media) pp 13–41CrossRefGoogle Scholar
  57. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, et al. 2008 A functional genetic link between distinct developmental language disorders. New Engl. J. Med. 359 2337–2345PubMedCrossRefGoogle Scholar
  58. Vernes SC, Nicod J, Elahi FM, Coventry JA, Kenny N, Coupe AM, et al. 2006 Functional genetic analysis of mutations implicated in a human speech and language disorder. Hum. Mol. Genet. 15 3154–3167PubMedCrossRefGoogle Scholar
  59. Watkins K, Vargha-Khadem F, Ashburner J, Passingham R, Connelly A, Friston K, et al. 2002 MRI analysis of an inherited speech and language disorder: structural brain abnormalities. Brain 125 465–478PubMedCrossRefGoogle Scholar
  60. Weisleder A and Fernald A 2013 Talking to children matters: early language experience strengthens processing and builds vocabulary. Psychol. Sci. 24 2143–2152.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Wingo AP, Almli L M, Stevens JS, Jovanovic T, Wingo TS, Tharp G, et al. 2017 Genome-wide association study of positive emotion identifies a genetic variant and a role for microRNAs. Mol. Psychiatry 22 774–783PubMedCrossRefGoogle Scholar
  62. Wong PCM, Vuong LC and Liu K 2017 Personalized learning: from neurogenetics of behaviors to designing optimal language training. Neuropsychologia 98 192–200PubMedCrossRefGoogle Scholar
  63. Zovkic IB, Guzman-Karlsson MC and Sweatt JD 2013 Epigenetic regulation of memory formation and maintenance. Learning Memory 20 61–74PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.National Institute of TechnologyTiruchirappalliIndia

Personalised recommendations