Advertisement

Journal of Biosciences

, 44:24 | Cite as

Interrelation of Ca2+ and PE_PGRS proteins during Mycobacterium tuberculosis pathogenesis

  • Laxman S MeenaEmail author
Review
  • 112 Downloads

Abstract

In today’s era tuberculosis is a major threat to human population. The lethality of this disease is caused by very efficiently thrived bacteria Mycobacterium tuberculosis (M. tuberculosis). Ca2+ plays crucial role in maintenance of cellular homeostasis. Bacilli survival in human alveolar macrophages majorly depends on disruption in Ca2+ signaling. Bacilli sustainability in phagosome lies in the interruption of phagolysosomal fusion, which is possible because of low intracellular Ca2+ concentration. Bacilli contain various Ca2+ binding proteins which help in regulation of Ca2+ signaling for its own benefit. For the survival of pathogen, it requires alteration in normal Ca2+ concentration in healthy cell. In this review we aim to find the various Ca2+ binding domains which are present in several Ca2+ binding proteins of M. tuberculosis and variety of roles played by Ca2+ to survive bacilli within host cell. This manuscript emphasizes the Ca2+ binding domains present in PE_PGRS group of gene family and their functionality in M. tuberculosis survival and pathogenesis.

Keywords

Ca2+ signaling Ca2+ binding domains Ca2+ dormant stage M. tuberculosis PE_PGRS 

Abbreviations used

Ca2+

calcium ions

CAMLP

calmodulin-like proteins

M. tuberculosis

Mycobacterium tuberculosis

PE

Pro-Glu sequence

PE_PGRS

proline-glutamic polymorphic GC-rich repetitive sequence

TB

tuberculosis.

Notes

Acknowledgements

The authors acknowledge financial support from GAP0145 of the Department of Science and Technology and the Council of Scientific and Industrial Research, India.

References

  1. Antony C, Mehto S, Tiwari BK, Singh Y and Natarajan K 2015 regulation of l-type voltage gated calcium channel CACNA1S in macrophages upon Mycobacterium tuberculosis infection. PLOS One 10 e0124263CrossRefGoogle Scholar
  2. Aravind P, Mishra A, Suman SK, Jobby MK, Sankaranarayanan R and Sharma Y 2009 The beta gamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry 48 12180–12190CrossRefGoogle Scholar
  3. Arockiasamy A, Holzenburg A, Aggarwal A, Savva CG and James C 2011 Sacchettini crystal structure of calcium dodecin (Rv0379), from Mycobacterium tuberculosis with a unique calcium-binding site. Protein Sci. 20 827–833CrossRefGoogle Scholar
  4. Bachhawat N and Singh B 2007 Mycobacterial PE PGRS proteins contain calcium-binding motifs with parallel β-roll folds. Genomics Proteomics Bioinformatics 5 236–241CrossRefGoogle Scholar
  5. Banerjee C, Khatri P, Raman R, Bhatia H, Datta M and Mazumder S 2014 Role of calmodulin calmodulin kinase II, camp/protein kinase a and Erk 1/2 on Aeromonas hydrophila-induced apoptosis of head kidney macrophages. PLoS Pathog. 10 e1004018CrossRefGoogle Scholar
  6. Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS, Beyreuther K, Masters CL, Parker MW and Cappai R 2003 Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J. Biol. Chem. 278 17401–17407CrossRefGoogle Scholar
  7. Baumann U, Wu S, Flaherty KM and McKay DB 1993 Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. EMBO J. 12 3357–3364CrossRefGoogle Scholar
  8. Berridge MJ, Bootman MD and Roderick HL 2003 Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4 517–529CrossRefGoogle Scholar
  9. Berridge MJ, Lipp P and Bootman MD 2000 The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1 11–21CrossRefGoogle Scholar
  10. Bilecen K and Yildiz FH 2009 Identification of a calcium-controlled negative regulatory system affecting Vibrio cholera biofilm formation. Environ. Microbiol. 11 2015–2029CrossRefGoogle Scholar
  11. Brennan MJ and Delogu G 2002 The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol. 10 246–249CrossRefGoogle Scholar
  12. Burra SS, Reddy PH and Murthy PS 1995 Effect of some antitubercular drugs on the calmodulin content of Mycobacterium tuberculosis. Ind. J. Clin. Biochem. 10 126–128CrossRefGoogle Scholar
  13. Burra SS, Reddy PH, Falah SM, Venkitasubramanian TA and Murthy PS 1991 calmodulin-like protein and the phospholipids of Mycobacterium smegmatis. FEMS Microbiol. Lett. 64 189–194CrossRefGoogle Scholar
  14. Chadha A, Mehto S, Selvakumar A, Vashishta V, Kamble SS, Popli S, Raman R, Singh Y and Natarajan K 2015 Suppressive role of neddylation in dendritic cells during Mycobacterium tuberculosis infection. Tuberculosis 95 599–607CrossRefGoogle Scholar
  15. Cheung W Y 1982 Calmodulin: an overview. Fed. Proc. 41 2253PubMedGoogle Scholar
  16. Clapham DE 2007 Calcium Signaling. Cell 131 1047–1058CrossRefGoogle Scholar
  17. Cole ST 1999 Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett. 452 7–10CrossRefGoogle Scholar
  18. Coote JG 1992 Structural and functional relationships among the RTX toxin determinants of Gram negative bacteria. FEMS Microbiol. Rev. 8 137–161CrossRefGoogle Scholar
  19. Copin R, Coscollá M,Seiffert SN, Bothamley G, Sutherland J, Mbayo G, Sebastien Gagneux S and Ernst JD 2014 Sequence diversity in the PE_PGRS genes of Mycobacterium tuberculosis is independent of human T cell recognition. mBio 5 e00960–13Google Scholar
  20. Datta D, Khatri P, Banerjee C, Singh A, Meena R, Saha DR, Raman R, Rajamani P, Mitra A and Mazumder S 2016 calcium and superoxide-mediated pathways converge to induce nitric oxide-dependent apoptosis in Mycobacterium fortuitum infected fish macrophages. PLoS One 11 e0146554CrossRefGoogle Scholar
  21. Delogu G, Pusceddu C, Bua A, Fadda G, Brennan MJ and Zanetti S 2004 Rv1818c-encoded PE PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol. Microbiol. 52 725–733CrossRefGoogle Scholar
  22. Dheenadhalayan V, Delogu G, and Brennan MJ 2006 Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect. 8 262–272CrossRefGoogle Scholar
  23. Dominguez DC 2011 Proteome analysis of B. subtilis in response to calcium. J. Anal. Bioanal. Tech.  https://doi.org/10.4172/2155-9872.s6-001 CrossRefGoogle Scholar
  24. Falah AMS, Bhatnagar R, Bhatnagar N, Singh Y, Sidhu GS, Murthy PS and Venkitasubramanian TA 1988 On the presence of calmodulin-like protein in mycobacteria. FEMS Microbiol. Lett. 56 89–93CrossRefGoogle Scholar
  25. Ferrari G, Langen H, Naito M and Pieters J 1999 A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell 97 435–447CrossRefGoogle Scholar
  26. Fry IJ, Villa L, Kuehn GD and Hageman JH 1986 Calmodulin-Like Protein from Bacillus subtilis. Biochem. Biophys. Res. Commun. 134 212–217CrossRefGoogle Scholar
  27. Gangola P and Rosen BP 1987 Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 262 12570–12574PubMedGoogle Scholar
  28. Gilabert JA 2012 Cytoplasmic calcium buffering. Adv. Exp. Med. Biol. 740 483–98CrossRefGoogle Scholar
  29. Global Tuberculosis Report 2017 World Health Organization http://www.who.int/tb/publications/global_report/MainText_13Nov2017.pdf?ua=1
  30. Halaby DM, Poupon A and Mornon J 1999 The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng. 12 563–571CrossRefGoogle Scholar
  31. Harmon, AC, Prasher D and Cormier MJ 1985 High Affinity Calcium Binding proteins in Escherichia coli. Biochem. Biophys. Res. Commun. 127 31–36CrossRefGoogle Scholar
  32. Hashimoto K and Kudla J 2011 Calcium decoding mechanisms in plants. Biochimie 93 2054–2059CrossRefGoogle Scholar
  33. Huang DT, Miller DW, Mathew R, Cassell R, Holton JM, Roussel MF and Schulman BA 2004 A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11 927e35Google Scholar
  34. Ikura M, Osawa M and Ames JB 2002 The role of calcium-binding proteins in the control of transcription: structure to function. BioEssays 24 625–636CrossRefGoogle Scholar
  35. Jayachandran R, Sundaramurthy V, Combaluzier B, Korf H, Huygen K, Miyazaki T, Albrecht I, Massner J and Pieters J 2007 Survival of mycobacteria in macrophages is mediated by coronin 1-dependent activation of calcineurin. Cell 130 37–50CrossRefGoogle Scholar
  36. Jones HE, Holland IB, Baker HL and Campbell AK 1999 Slow changes in cytosolic free Ca2+ in Escherichia coli highlight two putative influx mechanisms in response to changes in extracellular calcium. Cell Calcium 25 265–74CrossRefGoogle Scholar
  37. Koul A, Herget T, Klebl B and Ullrich A 2004 Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol. 2 189–202CrossRefGoogle Scholar
  38. Koul S, Somayajulu A, Advani MJ and Reddy H 2009 A novel calcium binding protein in Mycobacterium tuberculosis- potential target of trifluoperazine. Ind. J Exp. Biol. 47 480–488Google Scholar
  39. Kretsinger RH 1976 Calcium-binding proteins. Annu. Rev. Biochem. 45 239–266CrossRefGoogle Scholar
  40. Kumari P and Meena LS 2014 Factors affecting susceptibility to Mycobacterium tuberculosis: a close view of immunological defence mechanism. Appl. Biochem. Biotechnol. 174 2663–73CrossRefGoogle Scholar
  41. Lilie, H, Haehnel W, Rudolph R and Baumann U 2000 Folding of a synthetic parallel beta-roll protein. FEBS Lett. 470 173–177CrossRefGoogle Scholar
  42. Lin YP, Raman R, Sharma Y and Chang YF 2008 Calcium binds to leptospiral immunoglobulin-like protein, LigB, and modulates fibronectin binding. J Biol. Chem 283 25140–25149CrossRefGoogle Scholar
  43. Majeed M, Perskvist N, Ernst JD, Orselius K and Stendahl O 1998 Roles of calcium and annexins in phagocytosis and elimination of an attenuated strain of Mycobacterium tuberculosis in human neutrophils. Microb. Pathog. 24 309–320CrossRefGoogle Scholar
  44. Malik ZA, Denning GM and Kusner DJ 2000 Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191 287–302CrossRefGoogle Scholar
  45. Meena LS 2015 An overview to understand the role of PE_PGRS family proteins in Mycobacterium tuberculosis H37Rv and their potential as new drug target. IUBMB 62 145–153Google Scholar
  46. Meena LS and Meena J 2016 Cloning and Characterization of a novel PE_PGRS60 protein (Rv3652) of Mycobacterium tuberculosis H37Rv, exhibiting fibronectin binding property. Biotechnol. Appl. Biochem. 63 531Google Scholar
  47. Meena LS and Rajni 2010 Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 277 2416–2427CrossRefGoogle Scholar
  48. Meena PR, Monu and Meena LS 2016 Fibronectin binding protein and Ca2+ play an access key role to mediate pathogenesis in Mycobacterium tuberculosis; An overview. Biotechnol. Appl. Biochem. 63 820–826CrossRefGoogle Scholar
  49. Michiels J, Xi C, Verhaert J and Vanderleyden J 2002 The functions of Ca in bacteria: a role for EF-hand proteins? Trends Microbiol. 10 87–93CrossRefGoogle Scholar
  50. Monu and Meena LS 2016 Biochemical characterization of PE_PGRS61 family protein of M. tuberculosis H37Rv reveals the binding ability to Fibronectin, Iran. J. Basic. Med. Sci. 19 1105–1113PubMedPubMedCentralGoogle Scholar
  51. Naseem R, Wann KT, Holland IB and Campbell AK 2009 ATP regulates calcium efflux and growth in E. coli. J Mol. Biol. 391 42–56CrossRefGoogle Scholar
  52. Nejatbakhsh N and Feng ZP 2011 Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases. Acta Pharmacol. Sin. 32 741–748CrossRefGoogle Scholar
  53. NYU Langone Medical Center/New York University School of Medicine 2015 unexpected role for calcium in controlling inflammation during chronic lung infection www.sciencedaily.com/releases/2015/
  54. Oomes SJ, Jonker MJ, Wittink FR, Hehenkamp JO, Breit TM and Brul S 2009 The effect of calcium on the transcriptome of sporulating B. subtilis cells. Int. J Food. Microbiol. 133 234–242CrossRefGoogle Scholar
  55. Patrauchan MA, Sarkisova SA and Franklin MJ 2007 Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology 153 3838–3851CrossRefGoogle Scholar
  56. Permyakov EA and Kretsinger RH 2009 Cell signaling, beyond cytosolic calcium in eukaryotes. J. Inorg. Biochem. 103 77–86CrossRefGoogle Scholar
  57. Podobnik M, Tyagi R, Matange N, Dermol U, Gupta AK, Mattoo R, Seshadri K and Visweswariah SS 2009 A mycobacterial cyclic AMP phosphodiesterase that moonlights as a modifier of cell wall permeability. J. Biol. Chem. 284 32846–32857CrossRefGoogle Scholar
  58. Poulet S and Cole ST 1995 Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch. Microbiol. 163 87–95CrossRefGoogle Scholar
  59. Ramakrishnan L, Federspiel NA and Falkow S 2000 Granuloma specific expression of mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288 1436–1439CrossRefGoogle Scholar
  60. Raman R, Sharma Y and Chang YF 2011 Ca-binding and spectral properties of the common region of surface-exposed Lig proteins of leptospira. Commun. Integr. Biol. 4 331–333CrossRefGoogle Scholar
  61. Reddy PH, Burra SS and Murthy PS 1992 Correlation between calmodulin-like protein, phospholipids, and growth in glucose-grown Mycobacterium phlei. Can. J. Microbiol. 38 339–342CrossRefGoogle Scholar
  62. Rigden DJ and Galperin MY 2004 The DxDxDG motif for calcium binding: Multiple structural contexts and implications for evolution. J. Mol. Biol. 343 971–984CrossRefGoogle Scholar
  63. Rigden DJ, Jedrzejas MJ, Moroz OV and Galperin MY 2003 Structural diversity of calcium-binding proteins in bacteria: single-handed EF-hands? Trends Microbiol. 11 295–297CrossRefGoogle Scholar
  64. Sachdeva G, Kumar K, Jain P and Ramachandran S 2005 SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics 21 483 491Google Scholar
  65. Sanders D, Brownlee C and Harper JF 1999 Communicating with calcium. Plant Cell 11 691–706CrossRefGoogle Scholar
  66. Sharma S and Meena LS 2017 Potential of Ca2+ in Mycobacterium tuberculosis H 37 Rv pathogenesis and survival. Appl. Biochem. Biotechnol 181 762–771CrossRefGoogle Scholar
  67. Shaw S and Meena LS 2016 FnBPs: An effective adhesion molecule in Mycobacterium tuberculosis pathogenesis. MRJMMS 4 448–450Google Scholar
  68. Shenoy AR, Capuder M, Draskovic P, Lamba D, Visweswariah SS and Podobnik M 2007 Structural and biochemical analysis of the Rv0805 cyclic nucleotide phosphodiesterase from Mycobacterium tuberculosis. J. Mol. Biol. 365 211–225CrossRefGoogle Scholar
  69. Srivastava SS, Mishra A, Krishnan B and Sharma Y 2014 Ca2+ binding motif of beta gamma crystallins. J. Biol. Chem. 289 10958–10966CrossRefGoogle Scholar
  70. Tekaia F, Gordon SV, Garnier T, Brosch R, Barrell BG and Cole ST 1999 Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuberc. Lung. Dis. 79 329–342CrossRefGoogle Scholar
  71. Torrecilla I, Leganes F, Bonilla I and Fernandez-Pinas F 2000 Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacterial. Plant Physiol. 123 161–175CrossRefGoogle Scholar
  72. Trimble WS and Grinstein S 2007 TB or not TB: Calcium Regulation in Mycobacterial survival. Cell 130 12–14CrossRefGoogle Scholar
  73. Vergne I, Chua J and Deretic V 2003 tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hvps34 cascade. J. Exp. Med. 198 653–659CrossRefGoogle Scholar
  74. Wistow G 1990 Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J. Mol. Biol. 30 140–145Google Scholar
  75. Yadav M, Roach SK and Schorey JS 2004 Increased mitogen-activated protein kinase activity and tnf-production associated with Mycobacterium smegmatis but not Mycobacterium avium infected macrophages requires prolonged stimulation of the calmodulin/calmodulin kinase and cyclic amp/protein kinase a pathways. J. Immunol. 172 5588–5597CrossRefGoogle Scholar
  76. Yang K 2001 Prokaryotic calmodulins: recent developments and evolutionary implications. J. Mol. Microbiol. Biotechnol. 3 457–459PubMedGoogle Scholar
  77. Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y and Raghunand TR 2016 The PE_PGRS proteins of Mycobacterium tuberculosis are Ca2+ binding mediators of host-pathogen interaction. Biochemistry 55 4675–4687CrossRefGoogle Scholar
  78. Zampese E and Pizzo P 2012 Intracellular organelles in the saga of Ca homeostasis: different molecules for different purposes? Cell. Mol. Life. Sci. 69 1077–1104CrossRefGoogle Scholar
  79. Zhou Y, Yang W, Kirberger M, Lee HW, Ayalasomayajula G and Yang JJ 2006 Prediction of EF-hand calcium-binding proteins and analysis of bacterial EF-hand proteins. Proteins 65 643–655CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.CSIR–Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations