Journal of Biosciences

, Volume 43, Issue 4, pp 785–795 | Cite as

HTLV-1: A real pathogen or a runaway guest of a diseased cell?

  • L I B KanzakiEmail author


The human T-cell lymphotropic virus type 1 (HTLV-1) is a deltaretrovirus claimed to be aetiologically linked to the adult T-cell leukaemia/lymphoma (ATLL) and associated myelopathy/tropical spastic paraparesis (HAM/TSP) besides other minor pathologies. HTLV-1 infection is worldwide distributed, despite its heterogeneous prevalence. Environmental factors and host-genetic background are very likely to determine the epidemiological profile of HTLV-1 prevalence and related disease confinement in distinct human ethnic populations and geographical coordinates, which raises the question if the virus is a real pathogen or a runaway well-organized packed genome of a burden host cell near death process. New methodological approaches need to be proposed and applied in order to prove or discard the hypotheses emerged in the present review.


Deltaretrovirus environment HTLV ionizing radiation 



This work is especially dedicated to Dr. Koshi Maruyama, Dr. Laura Trejo-Avila and Dr. Jorge Casseb.


  1. Abrams A, Akahata Y and Jacobson S 2011 The prevalence and significance of HTLV-I/II seroindeterminate Western blot patterns. Viruses 3 1320–1331PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agoni L, Lenz J and Guha C 2013 Variant splicing and influence of ionizing radiation on human endogenous retrovirus K (HERV-K) transcripts in cancer cell lines. PLoS One 8 e76472PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Saleem J, Kvaratskhelia M and Green PL 2017 Methods for identifying and examining HTLV-1 HBZ post-translational modifications. Methods Mol. Biol. 1582 111–126PubMedCrossRefGoogle Scholar
  4. Al-Saleh I, Nester M, Abduljabbar M, Al-Rouqi R, Eltabache C, Al-Rajudi T and Elkhatib R 2016 Mercury (Hg) exposure and its effects on Saudi breastfed infant’s neurodevelopment. Int. J. Hyg. Environ. Health. 219 129–141PubMedCrossRefGoogle Scholar
  5. Anche MT, Bijma P and De Jong MC 2015 Genetic analysis of infectious diseases: estimating gene effects for susceptibility and infectivity. Genet. Sel. Evol. 47 1–15CrossRefGoogle Scholar
  6. Araujo TH, Barreto FK, Alcântara LC and Miranda AC 2014 Inferences about the global scenario of human T-cell lymphotropic virus type 1 infection using data mining of viral sequences. Mem. Inst. Oswaldo Cruz. 109 448–451PubMedPubMedCentralCrossRefGoogle Scholar
  7. Araya N, Sato T, Ando H, Tomaru U, Yoshida M, Coler-Reilly A, Yagishita N, Yamauchi J, et al. 2014 HTLV-1 induces a Th1-like state in CD4+CCR4+ T cells. J. Clin. Invest. 124 3431–3442PubMedPubMedCentralCrossRefGoogle Scholar
  8. Arisawa K, Soda M, Akahoshi M, Fujiwara S, Uemura H, Hiyoshi M, Takeda H, Kashino W, et al. 2006 Human T-cell lymphotropic virus type-1 infection and risk of cancer: 15.4 year longitudinal study among atomic bomb survivors in Nagasaki, Japan. Cancer Sci. 97 535–539PubMedCrossRefGoogle Scholar
  9. Arisawa K, Soda M, Akahoshi M, Matsuo T, Nakashima E, Tomonaga M and Saito H. 1998 Human T-lymphotropic virus type-I infection, antibody titers and cause-specific mortality among atomic-bomb survivors. Jpn. J. Cancer Res. 89 797–805PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arruda JT, Silva DM, Silva CC, Moura KK and da Cruz AD 2008 Homologous recombination between HERVs causes duplications in the AZFa region of men accidentally exposed to cesium-137 in Goiânia. Genet. Mol. Res. 7 1063–1069PubMedCrossRefGoogle Scholar
  11. Bangham CR and Cook LB, Melamed A 2014 HTLV-1 clonality in adult T-cell leukaemia and non-malignant HTLV-1 infection. Semin. Cancer Biol. 26 89–98PubMedPubMedCentralCrossRefGoogle Scholar
  12. Banki K, Maceda J, Hurley E, Ablonczy E, Mattson DH, Szegedy L, Hung C and Perl A 1992 Human T-cell lymphotropic virus (HTLV)-related endogenous sequence, HRES-1, encodes a 28-kDa protein: a possible autoantigen for HTLV-I gag-reactive autoantibodies. Proc. Natl. Acad. Sci. U S A 89 1939–1943PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barros Kanzaki LI 2006 Hypothetical HTLV-I induction by ionizing radiation. Med. Hypotheses 67 177–182PubMedCrossRefGoogle Scholar
  14. Bellon M and Nicot C 2015 Multiple pathways control the reactivation of telomerase in HTLV-I-associated leukemia. Int. J. Cancer Oncol. 2 1–17Google Scholar
  15. Beresford NA, Fesenko S, Konoplev A, Skuterud L, Smith JT and Voigt G 2016 Thirty years after the Chernobyl accident: what lessons have we learnt? J. Environ. Radioact. 157 77–89PubMedCrossRefGoogle Scholar
  16. Bickler SW, Lizardo E, Cauvi DM and De Maio A 2016 The transition from a rural to an urban environment in Africa alters G protein-coupled receptor signaling. Med. Hypotheses 95 49–53PubMedCrossRefGoogle Scholar
  17. Biglione MM, Pizarro M, Salomón HE and Berría MI 2003 A possible case of myelopathy/tropical spastic paraparesis in an Argentinian woman with human T lymphocyte virus type II. Clin. Infect. Dis. 37 456–458PubMedCrossRefGoogle Scholar
  18. Biswas HH, Engstrom JW, Kaidarova Z, Garratty G, Gibble JW, Newman BH, Smith JW, Ziman A, et al. 2009 Neurologic abnormalities in HTLV-I- and HTLV-II-infected individuals without overt myelopathy. Neurology 73 781–789PubMedPubMedCentralCrossRefGoogle Scholar
  19. Blaser H, Dostert C, Mak TW and Brenner D 2016 TNF and ROS Crosstalk in Inflammation. Trends Cell. Biol. 26 249–461PubMedCrossRefGoogle Scholar
  20. Boxus M, Willems L 2009 Mechanisms of HTLV-1 persistence and transformation. Br. J. Cancer 101 1497–1501PubMedPubMedCentralCrossRefGoogle Scholar
  21. Breen MS, Beliakova-Bethell N, Mujica-Parodi LR, Carlson LM, Ensign WY, Woelk CH and Rana BK 2015 Acute psychological stress induces short-term variable immune response. Brain Behav. Immun. 53 172–182PubMedCrossRefGoogle Scholar
  22. Brucato N, Cassar O, Tonasso L, Tortevoye P, Migot-Nabias F, Plancoulaine S, Guitard E, Larrouy G, et al. 2010 The imprint of the Slave Trade in an African American population: mitochondrial DNA, Y chromosome and HTLV-1 analysis in the Noir Marron of French Guiana. BMC Evol. Biol. 10 314PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cardis E, Anspaugh L, Ivanov VK, Likhtarev LA, Mabuchi K, Okeanov AE and Prisyazjhniuk AE 1996 Estimated long term health effects of the Chernobyl accidents. Proceedings of the International Conference. One decade after Chernobyl. Summing up the Consequence of the Accident, Vienna, pp 241–279Google Scholar
  24. Carneiro-Proietti AB, Ribas JG, Catalan-Soares BC, Martins ML, Brito-Melo GE, Martins-Filho OA, Pinheiro SR, Araújo Ade Q, et al. 2002 Infection and disease caused by the human T cell lymphotropic viruses type I and II in Brazil. Rev. Soc. Bras. Med. Trop. 35 499–508PubMedCrossRefGoogle Scholar
  25. Castro F, Harari F, Llanos M, Vahter M and Ronco AM 2014 Maternal-child transfer of essential and toxic elements through breast milk in a mine-waste polluted area. Am. J. Perinatol. 31 993–1002PubMedCrossRefGoogle Scholar
  26. Catalan-Soares B, Carneiro-Proietti AB and Proietti FA 2005 Interdisciplinary HTLV Research Group: heterogeneous geographic distribution of human T-cell lymphotropic viruses I and II (HTLV-I/II): serological screening prevalence rates in blood donors from large urban areas in Brazil. Cad. Saude Publica 21 926–931PubMedCrossRefGoogle Scholar
  27. Chang YB, Kaidarova Z, Hindes D, Bravo M, Kiely N, Kamel H, Dubay D, Hoose B, et al. 2014 Seroprevalence and demographic determinants of human T-lymphotropic virus type 1 and 2 infections among first-time blood donors – United States, 2000–2009. J. Infect. Dis. 209 523–531PubMedCrossRefGoogle Scholar
  28. Chao HH, Guo CH, Huang CB, Chen PC, Li HC, Hsiung DY and Chou YK 2014 Arsenic, cadmium, lead, and aluminium concentrations in human milk at early stages of lactation. Pediatr. Neonatol. 55 127–134PubMedCrossRefGoogle Scholar
  29. Chirumbolo S and Bjørklund G 2017 PERM hypothesis: the fundamental machinery able to elucidate the role of xenobiotics and hormesis in cell survival and homeostasis. Int. J. Mol. Sci. 18 1–18CrossRefGoogle Scholar
  30. Cloyd MW 1996 Human retroviruses; in Medical microbiology 4th edition, Chapter 62 (ed) S Baron (Galveston, TX: University of Texas Medical Branch at Galveston). Available from:
  31. Coffin JM 2015 The discovery of HTLV-1, the first pathogenic human retrovirus. Proc. Natl. Acad. Sci. USA 112 15525–15529PubMedCrossRefGoogle Scholar
  32. Counter SA, Buchanan LH, Ortega F, Chiriboga R, Correa R and Collaguaso MA 2014 Lead levels in the breast milk of nursing andean mothers living in a lead-contaminated environment. J. Toxicol. Environ. Health A. 77 993–1003PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cunha LR, Costa TH and Caldas ED 2013 Mercury concentration in breast milk and infant exposure assessment during the first 90 days of lactation in a midwestern region of Brazil. Biol. Trace Elem. Res. 151 30–37PubMedCrossRefGoogle Scholar
  34. da Costa CA, Furtado KC, Ferreira Lde S, Almeida Dde S, Linhares Ada C, Ishak R, Vallinoto AC, de Lemos JA, et al. 2013 Familial transmission of human T-cell lymphotrophic virus: silent dissemination of an emerging but neglected infection. PLoS Negl. Trop. Dis. 7 e2272PubMedPubMedCentralCrossRefGoogle Scholar
  35. de Castro-Amarante MF, Pise-Masison CA, McKinnon K, Washington Parks R, Galli V, Omsland M, Andresen V, Massoud R, et al. 2015 Human T cell leukemia virus type 1 infection of the three monocyte subsets contributes to viral burden in humans. J. Virol. 90 2195–2207PubMedCrossRefGoogle Scholar
  36. de la Peña-López R and Remolina-Bonilla YA 2016 Cancer. Gac. Med. Mex. 152 (Suppl 1) 63–66PubMedGoogle Scholar
  37. Di Meo S, Reed TT, Venditti P and Victor VM 2016 role of ROS and RNS sources in physiological and pathological conditions. Oxid Med. Cell. Longev. 2016 1245049PubMedPubMedCentralGoogle Scholar
  38. dos Santos FA, Cavecci B, Vieira JC, Franzini VP, Santos A, de Lima Leite A, Buzalaf MA, Zara LF, et al. 2015 A metalloproteomics study on the association of mercury with breast milk in samples from lactating women in the Amazon region of Brazil. Arch. Environ. Contam. Toxicol. 69 223–229PubMedCrossRefGoogle Scholar
  39. Dursun A, Yurdakok K, Yalcin SS, Tekinalp G, Aykut O, Orhan G and Morgil GK 2016 Maternal risk factors associated with lead, mercury and cadmium levels in umbilical cord blood, breast milk and newborn hair. J. Matern. Fetal. Neonatal. Med. 29 954–961PubMedCrossRefGoogle Scholar
  40. Einsiedel L, Woodman RJ, Flynn M, Wilson K, Cassar O and Gessain A 2016 Human T-lymphotropic virus type 1 infection in an indigenous Australian population: epidemiological insights from a hospital-based cohort study. BMC Public Health 16 787PubMedPubMedCentralCrossRefGoogle Scholar
  41. Evsikov AV and Marín de Evsikova C 2016 Friend or foe: epigenetic regulation of retrotransposons in mammalian oogenesis and early development. Yale J. Biol. Med. 89 487–497PubMedPubMedCentralGoogle Scholar
  42. Farkašová H, Hron T, Pačes J, Hulva P, Benda P, Gifford RJ and Elleder D 2017 Discovery of an endogenous Deltaretrovirus in the genome of long-fingered bats (Chiroptera: Miniopteridae). Proc. Natl. Acad. Sci. U S A 114 3145–3150PubMedPubMedCentralCrossRefGoogle Scholar
  43. Filippone C, Bassot S, Betsem E, Tortevoye P, Guillotte M, Mercereau-Puijalon O, Plancoulaine S, Calattini S, et al. 2012 A new and frequent human T-cell leukemia virus indeterminate Western blot pattern: epidemiological determinants and PCR results in central African inhabitants. J. Clin. Microbiol. 50 1663–1672PubMedPubMedCentralCrossRefGoogle Scholar
  44. Filippone C, Betsem E, Tortevoye P, Cassar O, Bassot S, Froment A, Fontanet A and Gessain A 2015 A severe bite from a nonhuman primate is a major risk factor for HTLV-1 infection in hunters from Central Africa. Clin. Infect. Dis. 60 1667–1676PubMedCrossRefGoogle Scholar
  45. Flajnik MF 2014 Re-evaluation of the immunological Big Bang. Curr. Biol. 24 R1060-5PubMedPubMedCentralCrossRefGoogle Scholar
  46. Furth J and Furth OB 1936 Neoplastic diseases produced in mice by general irradiation with X-rays. I. Incidence and types of neoplasms. Am. J. Cancer 28 54–65Google Scholar
  47. Gallo RC 2005 The discovery of the first human retrovirus: HTLV-1 and HTLV-2. Retrovirology 2 17PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gessain A and Cassar O 2012 Epidemiological aspects and world distribution of HTLV-1 infection. Front. Microbiol. 3 388PubMedPubMedCentralCrossRefGoogle Scholar
  49. Gessain A, Gallo RC and Franchini G 1992 Low degree of human T-cell leukemia/lymphoma virus type I genetic drift in vivo as a means of monitoring viral transmission and movement of ancient human populations. J. Virol. 66 2288–2295PubMedPubMedCentralGoogle Scholar
  50. Gessain A, Rua R, Betsem E, Turpin J and Mahieux R 2013 HTLV-3/4 and simian foamy retroviruses in humans: discovery, epidemiology, cross-species transmission and molecular virology. Virology 435 187–199PubMedCrossRefGoogle Scholar
  51. Giam CZ and Semmes OJ 2016 HTLV-1 infection and adult T-cell leukemia/lymphoma-A tale of two proteins: tax and HBZ. Viruses 8 1–23CrossRefGoogle Scholar
  52. Gross L 1958 Viral etiology of spontaneous mouse leukemia; a review. Cancer Res. 18 371–381PubMedGoogle Scholar
  53. Guimarães de Souza V, Lobato Martins M, Carneiro-Proietti AB, Januário JN, Ladeira RV, Silva CM, Pires C, Gomes SC, et al. 2012 High prevalence of HTLV-1 and 2 viruses in pregnant women in São Luis, state of Maranhão, Brazil. Rev. Soc. Bras. Med. Trop. 45 159–162PubMedCrossRefGoogle Scholar
  54. Haas M, Altman A, Rothenberg E, Bogart MH and Jones OW 1987 Radiation leukemia virus and X-irradiation induce in C57BL/6 mice two distinct T-cell neoplasms: a growth factor-dependent lymphoma and a growth factor-independent lymphoma. Leuk. Res. 11 223–239PubMedCrossRefGoogle Scholar
  55. Hida A, Imaizumi M, Sera N, Akahoshi M, Soda M, Maeda R, Nakashima E, Nakamura H, et al. 2010 Association of human T lymphotropic virus type I with Sjogren syndrome. Ann. Rheum. Dis. 69 2056–2057PubMedCrossRefGoogle Scholar
  56. Hyun J, Ramos JC, Toomey N, Balachandran S, Lavorgna A, Harhaj E and Barber GN 2015 Oncogenic human T-cell lymphotropic virus type 1 tax suppression of primary innate immune signaling pathways. J. Virol. 89 4880–4893PubMedPubMedCentralCrossRefGoogle Scholar
  57. Igakura T, Stinchcombe JC, Goon PK, Taylor GP, Weber JN, Griffiths GM, Tanaka Y, Osame M, et al. 2003 Spread of HTLV-I between lymphocytes by virus-induced polarization of the cytoskeleton. Science 299 1713–1716PubMedCrossRefGoogle Scholar
  58. Jin HS, Suh HW, Kim SJ and Jo EK 2017 Mitochondrial control of innate immunity and inflammation. Immune Netw. 17 77–88PubMedPubMedCentralCrossRefGoogle Scholar
  59. Jones KS, Lambert S, Bouttier M, Bénit L, Ruscetti FW, Hermine O and Pique C 2011 Molecular aspects of HTLV-1 entry: functional domains of the HTLV-1 surface subunit (SU) and their relationships to the entry receptors. Viruses 3 794–810PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kannian P, Fernandez S, Jones KS and Green PL 2013 Human T lymphotropic virus type 1 SU residue 195 plays a role in determining the preferential CD4+ T cell immortalization/transformation tropism. J. Virol. 87 9344–9352PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kanzaki LIB 1995 Epidemiologia del HTLV en la Amazonia brasileña: Seroprevalencia e identificacion del vírus circulante, Doctoral thesis, Universidad Autonoma de Nuevo Léon, Monterrey, Nuevo Leon, Mexico.
  62. Kanzaki L, Maruyama K, Fukushima T, Tamezguerra R, Trejoavila L, Casseb J, Neitzert E and Macedo J 1997 Markers of human T lymphotropic virus type I in patients with cancer of uterine cervix in Amazon, Brazil. Int. J. Oncol. 10 1021–1024PubMedGoogle Scholar
  63. Kaplan HS and Brown MB 1952 A quantitative dose-response study of lymphoid tumor development in irradiated C57 black mice. J. Natl. Cancer Inst. 13 185–208PubMedGoogle Scholar
  64. Kim FJ, Battini JL, Manel N and Sitbon M 2004 Emergence of vertebrate retroviruses and envelope capture. Virology 318 183–191PubMedCrossRefGoogle Scholar
  65. Kim FJ, Manel N, Boublik Y, Battini JL and Sitbon M 2003 Human T-cell leukemia virus type 1 envelope-mediated syncytium formation can be activated in resistant Mammalian cell lines by a carboxy-terminal truncation of the envelope cytoplasmic domain. J. Virol. 77 963–969PubMedPubMedCentralCrossRefGoogle Scholar
  66. Kunter İ, Hürer N, Gülcan HO, Öztürk B, Doğan İ and Şahin G 2016 Assessment of aflatoxin M1 and heavy metal levels in mothers breast milk in Famagusta, Cyprus. Biol. Trace Elem. Res. 175 42–49PubMedCrossRefGoogle Scholar
  67. Lairmore MD 2014 Animal models of bovine leukemia virus and human T-lymphotrophic virus type-1: insights in transmission and pathogenesis. Annu. Rev. Anim. Biosci. 2 189–208PubMedCrossRefGoogle Scholar
  68. LeBreton M, Switzer WM, Djoko CF, Gillis A, Jia H, Sturgeon MM, Shankar A, Zheng H, et al. 2014 A gorilla reservoir for human T-lymphotropic virus type 4. Emerg. Microbes Infect. 3 e7PubMedPubMedCentralCrossRefGoogle Scholar
  69. Leng S, Thomas CL, Snider AM, Picchi MA, Chen W, Willis DG, Carr TG, Krzeminski J, et al. 2016 Radon exposure, IL-6 promoter variants, and lung squamous cell carcinoma in former uranium miners. Environ. Health Perspect. 124 445–451PubMedCrossRefGoogle Scholar
  70. Li MM, Wu MQ, Xu J, Du J and Yan CH 2014 Body burden of Hg in different bio-samples of mothers in Shenyang city, China. PLoS One. 9 e98121PubMedCrossRefGoogle Scholar
  71. Lieberman M, Hansteen GA, Waller EK, Weissman IL and Sen-Majumdar A 1992 Unexpected effects of the severe combined immunodeficiency mutation on murine lymphomagenesis. J. Exp. Med. 176 399–405PubMedCrossRefGoogle Scholar
  72. Lieberman M and Kaplan HS 1959 Leukemogenic activity of filtrates from radiation-induced lymphoid tumors of mice. Science 130 387–388PubMedCrossRefGoogle Scholar
  73. Lino Ada R, Abrahão CM, Amarante MP and de Sousa Cruz MR 2015 The role of the implementation of policies for the prevention of exposure to radon in Brazil – a strategy for controlling the risk of developing lung cancer. Ecancermedicalscience 9 572PubMedGoogle Scholar
  74. Macnamara A, Rowan A, Hilburn S, Kadolsky U, Fujiwara H, Suemori K, Yasukawa M, Taylor G, et al. 2010 HLA class I binding of HBZ determines outcome in HTLV-1 infection. PLoS Pathog. 6 e1001117PubMedPubMedCentralCrossRefGoogle Scholar
  75. Maeda Y, Terasawa H, Tanaka Y, Mitsuura C, Nakashima K, Yusa K and Harada S 2015 Separate cellular localizations of human T-lymphotropic virus 1 (HTLV-1) Env and glucose transporter type 1 (GLUT1) are required for HTLV-1 Env-mediated fusion and infection. J. Virol. 89 502–511PubMedCrossRefGoogle Scholar
  76. Magalhães T, Mota-Miranda AC, Alcantara LC, Olavarria V, Galvão-Castro B and Rios-Grassi MF 2008 Phylogenetic and molecular analysis of HTLV-1 isolates from a medium sized town in northern of Brazil: tracing a common origin of the virus from the most endemic city in the country. J. Med. Virol. 80 2040–2045PubMedCrossRefGoogle Scholar
  77. Mahieux R and Gessain A 2011 HTLV-3/STLV-3 and HTLV-4 viruses: discovery, epidemiology, serology and molecular aspects. Viruses 3 1074–1090PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mahzounieh M, Ghorani M, Karimi A, Pourgheysari B and Nikoozad R 2015 Prevalence of human T-lymphotropic virus types I and II in patients with hematological disorders in Isfahan, Iran. Jundishapur J. Microbiol. 8 e17201PubMedGoogle Scholar
  79. Maloney EM, Biggar RJ, Neel JV, Taylor ME, Hahn BH, Shaw GM and Blattner WA. 1992 Endemic human T cell lymphotropic virus type II infection among isolated Brazilian Amerindians. J. Infect. Dis. 166 100–107PubMedCrossRefGoogle Scholar
  80. Manivannan K, Rowan AG, Tanaka Y, Taylor GP and Bangham CR 2016 CADM1/TSLC1 identifies HTLV-1-infected cells and determines their susceptibility to CTL-mediated lysis. PLoS Pathog. 12 e1005560PubMedPubMedCentralCrossRefGoogle Scholar
  81. Maria John KM, Khan F, Luthria DL, Garrett W and Natarajan S 2017 Proteomic analysis of anti-nutritional factors (ANF’s) in soybean seeds as affected by environmental and genetic factors. Food Chem. 218 321–329PubMedCrossRefGoogle Scholar
  82. Marques RC, Moreira Mde F, Bernardi JV and Dórea JG 2013 Breast milk lead concentrations of mothers living near tin smelters. Bull Environ. Contam. Toxicol. 91 549–554PubMedCrossRefGoogle Scholar
  83. Matsuo T, Nakashima E, Carter RL, Neriishi K, Mabuchi K, Akiyama M, Shimaoka K, Kinoshita K, et al. 1995 Anti-human T-lymphotropic virus type-I antibodies in atomic-bomb survivors. J. Radiat. Res. 36 8–16PubMedCrossRefGoogle Scholar
  84. McGill NK, Vyas J, Shimauchi T, Tokura Y and Piguet V 2012 HTLV-1-associated infective dermatitis: updates on the pathogenesis. Exp. Dermatol. 21 815–821PubMedCrossRefGoogle Scholar
  85. Medina F, Quintremil S, Alberti C, Godoy F, Pando ME, Bustamante A, Barriga A, Cartier L, et al. 2016 Tax secretion from peripheral blood mononuclear cells and Tax detection in plasma of patients with human T-lymphotropic virus-type 1-associated myelopathy/tropical spastic paraparesis and asymptomatic carriers. J. Med. Virol. 88 521–531PubMedCrossRefGoogle Scholar
  86. Mello MA, da Conceição AF, Sousa SM, Alcântara LC, Marin LJ, Regina da Silva Raiol M, Boa-Sorte N, Santos LP, et al. 2014 HTLV-1 in pregnant women from the Southern Bahia, Brazil: a neglected condition despite the high prevalence. Virol. J. 11 28PubMedPubMedCentralCrossRefGoogle Scholar
  87. Miller L 2016 Profile of the MP Diagnostics HTLV Blot 2.4 test: a supplemental assay for the confirmation and differentiation of antibodies to HTLV-1 and HTLV-2. Expert Rev. Mol. Diagn. 16 135–145PubMedCrossRefGoogle Scholar
  88. Montanheiro P, Olah I, Fukumori LM, Smid J, Oliveira AC, Kanzaki LI, Fonseca LA, Duarte AJ, et al. 2008 Low DNA HTLV-2 proviral load among women in São Paulo City. Virus Res. 135 22–25PubMedCrossRefGoogle Scholar
  89. Murray JS 2015 Transposon-mediated death of an ancestral A-23-like allele: evolution of TCR-positioning motifs in the HLA-A lineage. Immunogenetics 67 473–476PubMedCrossRefGoogle Scholar
  90. Nakauchi CM, Linhares AC, Maruyama K, Kanzaki LI, Macedo JE, Azevedo VN and Casseb JS 1990 Prevalence of human T cell leukemia virus-I (HTLV-I) antibody among populations living in the Amazon region of Brazil (preliminary report). Mem. Inst. Oswaldo Cruz. 85 29–33PubMedCrossRefGoogle Scholar
  91. Nunes D, Boa-Sorte N, Grassi MFR, Pimentel K, Teixeira MG, Barreto ML, Dourado I and Galvão-Castro B 2015 Evidence of a predominance of sexual transmission of HTLV-1 in Salvador, the city with the highest prevalence in Brazil. Retrovirology 12 (Suppl 1) O3PubMedCentralCrossRefGoogle Scholar
  92. O’Brien SF, Goldman M, Scalia V, Yi QL, Fan W, Xi G, Dines IR and Fearon MA 2013 The epidemiology of human T-cell lymphotropic virus types I and II in Canadian blood donors. Transfus Med. 23 358–566PubMedGoogle Scholar
  93. Ohishi K, Shibata Y, Nakamura T, Tsujihata M, Akahoshi M, Matsuo T, Tomonaga M, Nagataki S, et al. 1996 Autoantibodies and immunoglobulins in atomic bomb survivors with human T-lymphotropic virus type I. Intern. Med. 35 624–628PubMedCrossRefGoogle Scholar
  94. Osna NA, Bardag-Gorce F, White RL, Weinman SA, Donohue TM Jr and Kharbanda KK 2012 Ethanol and hepatitis C virus suppress peptide-MHC class I presentation in hepatocytes by altering proteasome function. Alcohol. Clin. Exp. Res. 36 2028–2035PubMedPubMedCentralCrossRefGoogle Scholar
  95. Padayachee A, Day L, Howell K and Gidley MJ 2017 Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Crit. Rev. Food Sci. Nutr. 57 59–81PubMedCrossRefGoogle Scholar
  96. Pais-Correia AM, Sachse M, Guadagnini S, Robbiati V, Lasserre R, Gessain A, Gout O, Alcover A, et al. 2010 Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat. Med. 16 83–89PubMedCrossRefGoogle Scholar
  97. Pamplona LKS, da Mata ECG, Sousa SD, Sousa VYK, Casseb J and Kanzaki LIB 2010 Elevated incidence of HTLV-1 infection in a highly inbred human population inhabiting the center of Marajo Island in the debouchment of Amazon river, Brazil; in Cellular Host-Pathogen Interactions, Amsterdam, 2010Google Scholar
  98. Panfil AR, Dissinger NJ, Howard CM, Murphy BM, Landes K, Fernandez SA and Green PL 2016 Functional comparison of HBZ and the related APH-2 protein provides insight into human T-cell leukemia virus type 1 pathogenesis. J. Virol. 90 3760–3772PubMedPubMedCentralCrossRefGoogle Scholar
  99. Percher F, Jeannin P, Martin-Latil S, Gessain A, Afonso PV, Vidy-Roche A and Ceccaldi PE 2016 Mother-to-Child transmission of HTLV-1 epidemiological aspects, mechanisms and determinants of mother-to-child transmission. Viruses 8 1–9CrossRefGoogle Scholar
  100. Perl A, Rosenblatt JD, Chen IS, DiVincenzo JP, Bever R, Poiesz BJ and Abraham GN 1989 Detection and cloning of new HTLV-related endogenous sequences in man. Nucleic Acids Res. 17 6841–6854PubMedPubMedCentralCrossRefGoogle Scholar
  101. Perzova R, Graziano E, Sanghi S, Welch C, Benz P, Abbott L, Lalone D, Glaser J, et al. 2015 Increased seroreactivity to human T cell lymphoma/leukemia virus-related endogenous sequence-1 Gag peptides in patients with human T cell lymphoma/leukemia virus myelopathy. AIDS Res. Hum. Retroviruses 31 242–249PubMedCrossRefGoogle Scholar
  102. Pessôa R, Watanabe JT, Nukui Y, Pereira J, Casseb J, de Oliveira AC, Segurado AC, and Sanabani SS 2014 Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLoS One 9 e93374PubMedPubMedCentralCrossRefGoogle Scholar
  103. Philip S, Zahoor MA, Zhi H, Ho YK and Giam CZ 2014 Regulation of human T-lymphotropic virus type I latency and reactivation by HBZ and Rex. PLoS Pathog. 10 e1004040PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pinto MT, Malta TM, Rodrigues ES, Takayanagui OM, Tanaka Y, Covas DT and Kashima S 2015 T cell receptor signaling pathway is overexpressed in CD4(+) T cells from HAM/TSP individuals. Braz. J. Infect. Dis. 19 578584Google Scholar
  105. Pitchappan RM 2016 Not all the infected develop the disease – a ‘Lotus and Cactus’ model. Infect. Genet. Evol. 40 303–309PubMedCrossRefGoogle Scholar
  106. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD and Gallo RC 1980 Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc. Natl. Acad. Sci. U S A 77 7415–7419PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ponomareva IS 2008 Biological cycle of radionuclides and dynamics of cattle leukemia in the Orenburg region. Radiat. Biol. Radioecol. 48 606–610Google Scholar
  108. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, Kamada N, Dohy H, et al. 1994 Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat. Res. 137 (Suppl 2) S68–S97Google Scholar
  109. Rebelo FM and Caldas ED 2016 Arsenic, lead, mercury and cadmium: toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 151 671–688PubMedCrossRefGoogle Scholar
  110. Reid MJ, Switzer WM, Schillaci MA, Ragonnet-Cronin M, Joanisse I, Caminiti K, Lowenberger CA, Galdikas BM, et al. 2016 Detailed phylogenetic analysis of primate T-lymphotropic virus type 1 (PTLV-1) sequences from orangutans (Pongo pygmaeus) reveals new insights into the evolutionary history of PTLV-1 in Asia. Infect. Genet. Evol. 43 434–450PubMedCrossRefGoogle Scholar
  111. Richard L, Mouinga-Ondémé A, Betsem E, Filippone C, Nerrienet E, Kazanji M and Gessain A 2016 Zoonotic transmission of two new strains of human T-lymphotropic virus type 4 in hunters bitten by a Gorilla in Central Africa. Clin. Infect. Dis. 63 800–803PubMedCrossRefGoogle Scholar
  112. Rowan AG, Suemori K, Fujiwara H, Yasukawa M, Tanaka Y, Taylor GP and Bangham CR 2014 Cytotoxic T lymphocyte lysis of HTLV-1 infected cells is limited by weak HBZ protein expression, but non-specifically enhanced on induction of Tax expression. Retrovirology 11 116PubMedPubMedCentralCrossRefGoogle Scholar
  113. Salehi M, Shokouhi Mostafavi SK, Ghasemian A, Gholami M, Kazemi-Vardanjani A and Rahimi MK 2016 Seroepidemiology of HTLV-1 and HTLV-2 Infection in Neyshabur City, North-Eastern Iran, during 2010–2014. Iran Biomed. J. 21 57–60PubMedCrossRefGoogle Scholar
  114. Sandhir R, Halder A and Sunkaria A 2017 Mitochondria as a centrally positioned hub in the innate immune response. Biochim. Biophys. Acta. 1863 1090–1097PubMedCrossRefGoogle Scholar
  115. Skalka AM 2014 Retroviral DNA transposition: themes and variations. Microbiol. Spectr. 2 1–31Google Scholar
  116. Slattery JP, Franchini G and Gessain A 1999 Genomic evolution, patterns of global dissemination, and interspecies transmission of human and simian T-cell leukemia/lymphotropic viruses. Genome Res. 9 525–540PubMedGoogle Scholar
  117. Sobata R, Matsumoto C, Uchida S, Suzuki Y, Satake M and Tadokoro K 2015 Estimation of the infectious viral load required for transfusion-transmitted human T-lymphotropic virus type 1 infection (TT-HTLV-1) and of the effectiveness of leukocyte reduction in preventing TT-HTLV-1. Vox Sang. 109 122–128PubMedCrossRefGoogle Scholar
  118. Sochorová L, Hanzlíková L, Černá M, Drgáčová A, Fialová A, Švarcová A, Gramblička T and Pulkrabová J 2016 Perfluorinated alkylated substances and brominated flame retardants in serum of the Czech adult population. Int. J. Hyg. Environ. Health S1438-4639 1–127Google Scholar
  119. Soleimani S, Shahverdy MR, Mazhari N, Abdi K, Gerayesh Nejad S, Shams S, Alebooyeh E and Khaghani S 2014 Lead concentration in breast milk of lactating women who were living in Tehran, Iran. Acta Med. Iran. 52 56–59PubMedGoogle Scholar
  120. Song Y, Lee CK, Kim KH, Lee JT, Suh C, Kim SY, Kim JH, Son BC, et al. 2016 Factors associated with total mercury concentrations in maternal blood, cord blood, and breast milk among pregnant women in Busan, Korea. Asia Pac. J. Clin. Nutr. 25 340–349PubMedGoogle Scholar
  121. Sumption N, Goodhead DT and Anderson RM 2015 Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability. PLoS One 10 e0134046PubMedPubMedCentralCrossRefGoogle Scholar
  122. Tagliaferro FS, Fernandes EA and Sarriés GA 1999 Environmental control in the uranium mine Lagoa Real, Brazil. Biol. Trace Elem. Res. 7172 299–308PubMedCrossRefGoogle Scholar
  123. Takatsuki K 2005 Discovery of adult T-cell leukemia. Retrovirology 2 16.
  124. Tonda T, Satoh K, Otani K, Sato Y, Maruyama H, Kawakami H, Tashiro S, Hoshi M, et al. 2012 Investigation on circular asymmetry of geographical distribution in cancer mortality of Hiroshima atomic bomb survivors based on risk maps: analysis of spatial survival data. Radiat. Environ. Biophys. 51 133–141PubMedPubMedCentralCrossRefGoogle Scholar
  125. Uddin S, Aba A, Fowler SW, Behbehani M, Ismaeel A, Al-Shammari H, Alboloushi A, Mietelski JW, et al. 2015 Radioactivity in the Kuwait marine environment – Baseline measurements and review. Mar. Pollut. Bull. 100 651–661PubMedCrossRefGoogle Scholar
  126. Umeki K, Umekita K, Hashikura Y, Yamamoto I, Kubo K, Nagatomo Y and Okayama A 2017 Evaluation of line immunoassay to detect HTLV-1 infection in an endemic area, Southwestern Japan; comparison with polymerase Chain reaction and Western Blot. Clin. Lab. 63 227–233PubMedCrossRefGoogle Scholar
  127. Viana GM, Nascimento M do D, de Oliveira RA, Dos Santos AC, Galvão Cde S and da Silva MA 2014 Seroprevalence of HTLV-1/2 among blood donors in the state of Maranhão, Brazil. Rev. Bras. Hematol. Hemoter. 36 50–53PubMedCrossRefGoogle Scholar
  128. Winiarska-Mieczan A 2014 Cadmium, lead, copper and zinc in breast milk in Poland. Biol. Trace Elem. Res. 157 36–44PubMedCrossRefGoogle Scholar
  129. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, Nakagawa M, Suzuki Y, et al. 2016 HTLV-1 bZIP factor impairs anti-viral immunity by inducing co-inhibitory molecule, T cell immunoglobulin and ITIM domain (TIGIT). PLoS Pathog. 12 e1005372PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Laboratory of Bioprospection, Department of PharmacyUniversity of BrasiliaBrasíliaBrazil

Personalised recommendations