Advertisement

Quark novae: An alternative channel for the formation of isolated millisecond pulsars

  • Nurimangul Nurmamat
  • Chunhua ZhuEmail author
  • Guoliang Lü
  • Zhaojun Wang
  • Lin Li
  • Helei Liu
Article
  • 7 Downloads

Abstract

Isolated millisecond pulsars (IMSPs) are a topic of academic contention. There are various models to explain their formation. We explore the formation of IMSP via quark novae (QN). During this formation process, low-mass X-ray binaries (LMXBs) are disrupted when the mass of the neutron star (NS) reaches \(1.8M_\odot \). Using population synthesis, this work estimates that the galactic birthrate of QN-produced IMSPs lies between \({\sim }9.5\times 10^{-6}\) and \({\sim }1.7\times 10^{-4}\) \(\mathrm{yr}^{-1}\). The uncertainties shown in our experiment model is due to the QN’s kick velocity. Furthermore, our findings not only show that QN-produced IMSPs are statistically more significant than those produced by mergers, but also that millisecond pulsar binaries with a high eccentricity may originate from LMXBs that have been involved in, yet not disrupted by, a QN.

Keywords

Pulsars: general stars: neutron binaries: close 

Notes

Acknowledgements

The authors would like to thank the anonymous referee for their careful reading and constructive criticism. This work received generous support from the National Natural Science Foundation of China, Project Nos 11763007, 11863005, 11803026 and 11503008. They would also like to express their sincere gratitude to the Tianshan Youth Project of Xinjiang No. 2018Q014.

References

  1. Alpar M. A., Cheng A. F., Ruderman M. A., Shaham J. 1982, Nature, 300, 728ADSCrossRefGoogle Scholar
  2. Antoniadis J. 2014, ApJL, 797, L24ADSCrossRefGoogle Scholar
  3. Backer D. C. 1987, in Helfand D. J., Huang J.-H., eds, The Origin and Evolution of Neutron Stars, IAU Symposium, Volume 125, pp. 13–21Google Scholar
  4. Bagchi M., Ray A. 2009, ApJL, 693, L91ADSCrossRefGoogle Scholar
  5. Bailes M., Johnston S., Bell J. F. et al. 1997, ApJ, 481, 386ADSCrossRefGoogle Scholar
  6. Belczynski K., Lorimer D. R., Ridley J. P., Curran S. J. 2010, MNRAS, 407, 1245ADSCrossRefGoogle Scholar
  7. Bhattacharya D., Srinivasan G. 1991, J. Astrophys. Astron., 12, 17ADSCrossRefGoogle Scholar
  8. Bhattacharya D., van den Heuvel E. P. J. 1991, PhR, 203, 1ADSGoogle Scholar
  9. Brandt N., Podsiadlowski P. 1995, MNRAS, 274, 461ADSCrossRefGoogle Scholar
  10. Camilo F., Nice D. J., Taylor J. H. 1993, ApJL, 412, L37ADSCrossRefGoogle Scholar
  11. Chen H.-L., Chen X., Tauris T. M., Han Z. 2013, ApJ, 775, 27ADSCrossRefGoogle Scholar
  12. Cheng K. S., Dai Z. G. 1996, ApJ, 468, 819ADSCrossRefGoogle Scholar
  13. Davies M. B., Ritter H., King A. 2002, MNRAS, 335, 369ADSCrossRefGoogle Scholar
  14. Ferrario L., Wickramasinghe D. 2007, MNRAS, 375, 1009ADSCrossRefGoogle Scholar
  15. Freire P. C. C., Tauris T. M. 2014, MNRAS, 438, L86ADSCrossRefGoogle Scholar
  16. Ghosh P., Lamb F. K. 1978, ApJL, 223, L83ADSCrossRefGoogle Scholar
  17. Goldberg D., Mazeh T. 1994, A&A, 282, 801ADSGoogle Scholar
  18. Grégoire T., Knödlseder J. 2013, A&A, 554, A62ADSCrossRefGoogle Scholar
  19. Hurley J. R., Tout C. A., Pols O. R. 2002, MNRAS, 329, 897ADSCrossRefGoogle Scholar
  20. Hutilukejiang B., Zhu C., Wang Z., Lü G. 2018, J. Astrophys. Astr., 39, 21ADSCrossRefGoogle Scholar
  21. Illarionov A. F., Sunyaev R. A. 1975, A&A, 39, 185ADSGoogle Scholar
  22. Jiang L., Li X.-D., Dey J., Dey M. 2015, ApJ, 807, 41ADSCrossRefGoogle Scholar
  23. Keränen P., Ouyed R., Jaikumar P. 2005, ApJ, 618, 485ADSCrossRefGoogle Scholar
  24. Kiel P. D., Hurley J. R. 2006, MNRAS, 369, 1152ADSCrossRefGoogle Scholar
  25. Kluzniak W., Ruderman M., Shaham J., Tavani M. 1988, Nature, 334, 225ADSCrossRefGoogle Scholar
  26. Kraicheva Z. T., Popova E. I., Tutukov A. V., Yungelson L. R. 1989, Astrophysics, 30, 323ADSCrossRefGoogle Scholar
  27. Lipunov V. M., Postnov K. A. 1988, A&A, 206, L15ADSGoogle Scholar
  28. Lorimer D. R. 2008, Living Reviews in Relativity, 11, arXiv:0811.0762
  29. Lorimer D. R., Lyne A. G., Bailes M. et al. 1996, MNRAS, 283, 1383ADSCrossRefGoogle Scholar
  30. Lorimer D. R., McLaughlin M. A., Arzoumanian Z. et al. 2004, MNRAS, 347, L21ADSCrossRefGoogle Scholar
  31. Lovelace R. V. E., Romanova M. M., Bisnovatyi-Kogan G. S. 1995, MNRAS, 275, 244ADSCrossRefGoogle Scholar
  32. Lü G., Yungelson L., Han Z. 2006, MNRAS, 372, 1389ADSCrossRefGoogle Scholar
  33. Lü G., Zhu C., Han Z., Wang Z. 2008, ApJ, 683, 990ADSCrossRefGoogle Scholar
  34. Lü G., Zhu C., Wang Z., Huo W., Yang Y. 2011, MNRAS, 413, L11ADSCrossRefGoogle Scholar
  35. Lü G., Zhu C., Wang Z., Iminniyaz H. 2017, ApJ, 847, 62ADSCrossRefGoogle Scholar
  36. Lü G., Zhu C., Wang Z., Wang N. 2009, MNRAS, 396, 1086ADSCrossRefGoogle Scholar
  37. Lü G.-L., Zhu C.-H., Postnov K. A. et al. 2012, MNRAS, 424, 2265ADSCrossRefGoogle Scholar
  38. Manchester R. N., Hobbs G. B., Teoh A., Hobbs M. 2005, AJ, 129, 1993ADSCrossRefGoogle Scholar
  39. Manchester R. N. (for IPTA) 2013, Classical and Quantum Gravity, 30, 224010Google Scholar
  40. Miller G. E., Scalo J. M. 1979, ApJS, 41, 513ADSCrossRefGoogle Scholar
  41. Ouyed R., Dey J., Dey M. 2002, A&A, 390, L39ADSCrossRefGoogle Scholar
  42. Ouyed R., Koning N., Leahy D. 2013, Res. Astron. Astrophys., 13, 1463ADSCrossRefGoogle Scholar
  43. Ouyed R., Leahy D., Koning N. 2015, Res. Astron. Astrophys., 15, 483ADSCrossRefGoogle Scholar
  44. Ouyed R., Staff J., Jaikumar P. 2011, ApJ, 743, 116ADSCrossRefGoogle Scholar
  45. Portegies Zwart S., van den Heuvel E. P. J., van Leeuwen J., Nelemans G. 2011, ApJ, 734, 55ADSCrossRefGoogle Scholar
  46. Pringle J. E., Rees M. J. 1972, A&A, 21, 1ADSGoogle Scholar
  47. Rasio F. A., Heggie D. C. 1995, ApJL, 445, L133ADSCrossRefGoogle Scholar
  48. Rawley L. A., Taylor J. H., Davis M. M., Allan D. W. 1987, Science, 238, 761ADSCrossRefGoogle Scholar
  49. Ruderman M., Shaham J., Tavani M. 1989, ApJ, 336, 507ADSCrossRefGoogle Scholar
  50. Rukeya R., Lü G., Wang Z., Zhu C. 2017, Publ. Astron. Soc. Pac., 129, 074201ADSCrossRefGoogle Scholar
  51. Shibazaki N., Murakami T., Shaham J., Nomoto K. 1989, Nature, 342, 656ADSCrossRefGoogle Scholar
  52. Stappers B. W., Bailes M., Manchester R. N., Sandhu J. S., Toscano M. 1998, ApJL, 499, L183ADSCrossRefGoogle Scholar
  53. Stovall K., Freire P. C. C., Antoniadis J. et al. 2019, ApJ, 870, 74ADSCrossRefGoogle Scholar
  54. Sun S., Li L., Liu H. et al. 2019, PASA, 36, 5ADSCrossRefGoogle Scholar
  55. Sun W., Zhu C., Wang Z., Lü G. 2016, Ap&SS, 361, 275ADSCrossRefGoogle Scholar
  56. Tauris T. M. 2016, Mem. Soc. Astron. Italiana, 87, 517ADSGoogle Scholar
  57. van den Heuvel E. P. J. 2008, in Bassa C., Wang Z., Cumming A., Kaspi V. M., eds, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, American Institute of Physics Conference Series, Volume 983, pp. 554–557Google Scholar
  58. van den Heuvel E. P. J., Bonsema P. T. J. 1984, A&A, 139, L16ADSGoogle Scholar
  59. van den Heuvel E. P. J., van Paradijs J. 1988, Nature, 334, 227ADSCrossRefGoogle Scholar
  60. Witten E. 1984, Phy. Rev. D, 30, 272ADSCrossRefGoogle Scholar
  61. Yisikandeer A., Zhu C., Wang Z., Lü G. 2016, J. Astrophys. Astron., 37, 22ADSCrossRefGoogle Scholar
  62. Zhu C., Lü G., Wang Z. 2015, MNRAS, 454, 1725ADSCrossRefGoogle Scholar
  63. Zhu C., Lü G., Wang Z. 2017, ApJ, 835, 249ADSCrossRefGoogle Scholar
  64. Zhu C., Lü G., Wang Z., Liu J. 2013, Publ. Astron. Soc. Pac., 125, 25ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Nurimangul Nurmamat
    • 1
  • Chunhua Zhu
    • 1
    Email author
  • Guoliang Lü
    • 1
  • Zhaojun Wang
    • 1
  • Lin Li
    • 1
  • Helei Liu
    • 1
  1. 1.School of Physical Science and TechnologyXinjiang UniversityÜrümqiChina

Personalised recommendations