Advertisement

Stellar models with generalized pressure anisotropy

  • Jefta M. Sunzu
  • Alberto K. Mathias
  • Sunil D. MaharajEmail author
Article
  • 13 Downloads

Abstract

New models for a charged anisotropic star in general relativity are found. We consider a linear equation of state consistent with a strange quark star. In our models a new form of measure of anisotropy is formulated; our choice is a generalization of other pressure anisotropies found in the past by other researchers. Our results generalize quark star models obtained from the Einstein–Maxwell equations. Well-known particular charged models are also regained. We indicate that relativistic stellar masses for several stars are obtained using the general mass function found in our model.

Keywords

Einstein–Maxwell equations equation of state relativistic stars 

Notes

Acknowledgements

We are grateful to the University of Dodoma in Tanzania for the favourable environment and availability of facilities for research. SDM acknowledges that this work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation.

References

  1. Abubekerov M. K., Antokhina E. A., Cherepashchuk A. M. 2008, Astronomy Reports, 52, 379ADSCrossRefGoogle Scholar
  2. Chaisi M., Maharaj S. D. 2005, Gen. Relativ. Gravit., 37, 1177ADSCrossRefGoogle Scholar
  3. Chaisi M., Maharaj S. D. 2006a, Pramana - J. Phys., 66, 313ADSCrossRefGoogle Scholar
  4. Chaisi M., Maharaj S. D. 2006b, Pramana - J. Phys., 66, 609ADSCrossRefGoogle Scholar
  5. Demorest P. B., Pennucci T. Ransom S. M., Roberts M. S. E., Hessels J. W. T. 2010, Nature, 463, 1081ADSCrossRefGoogle Scholar
  6. Dev K., Gleiser M. 2002, Gen. Relativ. Gravit., 34, 1793CrossRefGoogle Scholar
  7. Dev K., Gleiser M. 2003, Gen. Relativ. Gravit., 35, 1435ADSCrossRefGoogle Scholar
  8. Durgapal M. C., Bannerji R. 1983, Phys. Rev. D, 27, 328ADSMathSciNetCrossRefGoogle Scholar
  9. Elebert P., Reynolds M. T., Callan P. J. 2009, Mon. Not. R. Astron. Soc., 395, 884ADSCrossRefGoogle Scholar
  10. Esculpi M., Aloma E. 2010, Eur. Phys. J. C, 67, 521ADSCrossRefGoogle Scholar
  11. Feroze T., Siddiqui A. 2011, Gen. Relativ. Gravit., 43, 1025ADSCrossRefGoogle Scholar
  12. Gleiser M., Dev K. 2004, Int. J. Mod. Phys. D, 13, 1389ADSCrossRefGoogle Scholar
  13. Kalam M., Usmani A. A., Rahamani F., Hossein S. M., Karar I., Sharma R. 2013, Int. J. Theor. Phys., 52, 3319CrossRefGoogle Scholar
  14. Karmakar S., Mukherjee S., Sharma R., Maharaj S. D. 2007, Pramana - J. Phys., 68, 881ADSCrossRefGoogle Scholar
  15. Mafa Takisa P., Maharaj S. D., Ray S. 2013, Astrophys. Space Sci., 343, 569ADSCrossRefGoogle Scholar
  16. Mafa Takisa P., Maharaj S. D., Ray S. 2016, Astrophys. Space Sci., 361, 262ADSCrossRefGoogle Scholar
  17. Maharaj S. D., Chaisi M. 2006a, Gen. Relativ. Gravit., 38, 1123CrossRefGoogle Scholar
  18. Maharaj S. D., Chaisi M. 2006b, Math. Meth. Appl. Sci., 29, 67CrossRefGoogle Scholar
  19. Maharaj S. D., Matondo D. K., Mafa Takisa P. 2017, Int. J. Mod. Phys. D, 26, 1750014ADSCrossRefGoogle Scholar
  20. Maharaj S. D., Sunzu J. M., Ray S. 2014, Eur. Phys. J. Plus, 129, 3CrossRefGoogle Scholar
  21. Maharaj S. D., Thirukkanesh S. 2009, Pramana - J. Phys., 72, 481ADSCrossRefGoogle Scholar
  22. Mak M. K, Harko T. 2003a, Proc. Roy. Soc. Lond. A, 459, 393ADSCrossRefGoogle Scholar
  23. Mak M. K, Harko T. 2003b, Pramana - J. Phys., 65, 185ADSCrossRefGoogle Scholar
  24. Mak M. K., Harko T. 2004, Int. J. Mod. Phys. D, 13, 149ADSCrossRefGoogle Scholar
  25. Malaver M., 2013a, World Applied Programming, 3, 309Google Scholar
  26. Malaver M., 2013b, American Journal of Astronomy and Astrophysics, 1, 41CrossRefGoogle Scholar
  27. Malaver M., 2018, World Scientific News, 92, 327Google Scholar
  28. Matondo D. K., Maharaj S. D., Ray S. 2016, Astrophys. Space Sci., 361, 221ADSCrossRefGoogle Scholar
  29. Maurya S. K, Gupta Y. K. 2012, Phys. Scr., 86, 025009ADSCrossRefGoogle Scholar
  30. Negreiros R. P., Weber F., Malheiro M., Usov V. 2009, Phys. Rev. D, 80, 083006ADSCrossRefGoogle Scholar
  31. Ozel F., Guver T., Psaltis D. 2009, Astrophys. J., 693, 1775ADSCrossRefGoogle Scholar
  32. Paul B. C., Chattopadhyay P. K., Karmakar S., Tikekar R. 2011, Mod. Phys. Lett. A, 26, 575ADSCrossRefGoogle Scholar
  33. Rahaman F., Sharma R., Ray S., Maulick R., Karar I. 2012, Eur. Phys. J. C, 72, 2071ADSCrossRefGoogle Scholar
  34. Rawls M. L., Orosz J. A., Mc Clintock J. E. 2011, Astrophys., J., 730, 25Google Scholar
  35. Sunzu J. M., Danford P. 2017, Pramana - J. Phys., 44, 89Google Scholar
  36. Sunzu J. M., Mahali K. 2018, Global Journal of Science Frontier Research, 18,19Google Scholar
  37. Sunzu J. M., Maharaj S. D., Ray S. 2014a, Astrophys. Space Sci., 352, 719ADSCrossRefGoogle Scholar
  38. Sunzu J. M., Maharaj S. D., Ray S. 2014b, Astrophys. Space Sci., 354, 2131CrossRefGoogle Scholar
  39. Thirukkanesh S., Maharaj S. D. 2008, Class. Quantum Grav., 25, 235001ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics, School of Mathematical SciencesUniversity of DodomaDodomaTanzania
  2. 2.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations