Advertisement

On the unified scheme for high-excitation galaxies and quasars in 3CRR sample

  • F. C. OdoEmail author
  • P. E. Okobi
  • J. A. Alhassan
  • A. A. Ubachukwu
Article
  • 15 Downloads

Abstract

In this paper, we use the distributions of luminosity (P) and radio size (D) to re-examine the consistency of the unified scheme of high-excitation radio galaxies and quasars in the recently updated 3CRR sample. Based on a standard cosmology, we derive theoretically and show from observed data, the luminosity limit above which the 3CRR objects are well-sampled. We find, on average, a quasar fraction \(\sim \) 0.44 and galaxy-to-quasar size ratio \(\approx \) 2. Assuming a relativistic outflow of jet materials, we find a mean angle to the line of sight in the range \(35^{\circ }\,\le \,\phi \,\le 44^{\circ }\) for the quasars. On supposition of luminosity and orientation-dependent linear size evolution, expressed in a general functional form \(D_{(P,z,\phi )}\,\approx \,P^{\pm q}\)(1+\(z)^{-w}\)sin\(\phi \), we show that above the flux detection threshold of the 3CRR sample, high-excitation galaxies and quasars undergo similar evolution with \(q = -\,0.5\); \(w = -\,0.27\) and luminosity independent evolution parameter \(x = 2.27\), when orientation effect is accounted for. The results are consistent with orientation-based unified scheme for radio galaxies and quasars.

Keywords

Galaxies: active galaxies: quasars general 

Notes

Acknowledgements

The authors are grateful to the anonymous referee for invaluable suggestions.

References

  1. Aird J., Wandra K., Laird E. S., Georgakakis A., Ashby M. 2010, MNRAS, 401, 2531ADSCrossRefGoogle Scholar
  2. Alhassan J. A., Ubachukwu A. A., Odo F. C. 2013, JOAA, 34, 61Google Scholar
  3. Barthel, P. D. 1989, ApJ, 33, 606ADSCrossRefGoogle Scholar
  4. Buttiglione S., Capetti A., Celotti A., et al. 2010, A & A, 509, A6ADSCrossRefGoogle Scholar
  5. Capetti A., Massaro F., Baldi R. D. 2017, A & A, 601, A81ADSCrossRefGoogle Scholar
  6. Cohen M. H., Barthel P. D., Pearson T. J., Zensus J. A. 1988, ApJ, 329, 1Google Scholar
  7. Fan J. H., Zhang J. S. 2003, A & A, 407, 899ADSCrossRefGoogle Scholar
  8. Fanaroff B. L., Riley J. M. 1974, MNRAS, 167, 31PADSCrossRefGoogle Scholar
  9. Grimes J. A., Rawlings S., Willott C. J. 2004, MNRAS, 349, 503ADSCrossRefGoogle Scholar
  10. Gopal-Krishna Kulkarni V. K., Mangalam A. V. 1994, MNRAS, 268, 459Google Scholar
  11. Hardcastle M. J., Evans D. A., Croston J. H. 2009, MNRAS, 396, 1929ADSCrossRefGoogle Scholar
  12. Jackson C. A., Wall J. V. 1999, MNRAS, 304, 160ADSCrossRefGoogle Scholar
  13. Kapahi V. K. 1989, ApJ, 97, 1ADSCrossRefGoogle Scholar
  14. Laing R. A., Jenkins C. R., Wall J. V., Unger S. W. 1994, in Bicknell, G. V., Dopita, M. A. Quinn, P. J. ASP conference series, 54, 201Google Scholar
  15. Le Cam L. 1990, ISI Review, 58, 153Google Scholar
  16. Ledlow M. J., Owen F. N. 1996, AJ, 112, 9Google Scholar
  17. Leipski C., Haas M., Willner S., et al. 2010, ApJ, 717, 766Google Scholar
  18. Lind K. R., Blandford R. D. 1985, ApJ, 295, 358ADSCrossRefGoogle Scholar
  19. Masson C. R. 1980, MNRAS, 187, 253ADSCrossRefGoogle Scholar
  20. Mattig W. 1959, Astron. Nach., 285, 1ADSCrossRefGoogle Scholar
  21. Miley G. K. 1968, Nature, 218, 93ADSCrossRefGoogle Scholar
  22. Morabito L. K., Williams W. I., Duncan K. J., et al. 2017, MNRAS, 469, 1883ADSCrossRefGoogle Scholar
  23. Nilsson K., Valtonen M. J. Kotilainen J., Jaakkola T. 1993, ApJ, 413, 453ADSCrossRefGoogle Scholar
  24. Odo F. C., Ubachukwu A. A., Chukwude A. E. 2012, JAA, 33, 279Google Scholar
  25. Odo F. C., Ubachukwu A. A., Chukwude A. E. 2014, Ap&SS, 349, 939ADSCrossRefGoogle Scholar
  26. Odo F. C., Ubachukwu A. A., Chukwude A. E. 2015, Ap&SS, 357, 147ADSCrossRefGoogle Scholar
  27. Ogle P., Whysong D., Antonucci R. 2006, ApJ, 647, 161ADSCrossRefGoogle Scholar
  28. Okoye S. E., Onuora L. I. 1982, ApJ, 260, 37ADSCrossRefGoogle Scholar
  29. Onah C. I., Ubachukwu A. A., Odo F. C., Onuchukwu C. C. 2018, RevMexAA, 54, 1Google Scholar
  30. Onuora L. I. 1991, Ap. J., 377, 36ADSCrossRefGoogle Scholar
  31. Onuora L. I., Okoye S. E. 1983, ApJ, 270, 360ADSCrossRefGoogle Scholar
  32. Oort M. J. A., Kartgert P., Windhorst R. A. 1987, Nature, 328, 500ADSCrossRefGoogle Scholar
  33. Orr M. J., Browne I. W. A. 1982, MNRAS, 200, 1067ADSCrossRefGoogle Scholar
  34. Padovani P., Bonzini M., Kellermann K. I., Miller N., Mainieri V., Tozzi P. 2015, MNRAS, 452, 1263ADSCrossRefGoogle Scholar
  35. Rigby E. E., Argyle J., Best P. N., Rosario D., Röttgering H. J. A. 2015, A & A, 581, A96ADSCrossRefGoogle Scholar
  36. Saikia D. J., Kulkarni V. K. 1994, MNRAS, 270, 897ADSCrossRefGoogle Scholar
  37. Shannon R. M., Cordes J. M. 2010, ApJ, 725, 1607ADSCrossRefGoogle Scholar
  38. Singal A. K. 1993, MNRAS, 263, 139ADSCrossRefGoogle Scholar
  39. Singal A. K. 2014, AJ., 148, 16ADSCrossRefGoogle Scholar
  40. Singal A. K., Singh 2013, ApJ., 766, 37Google Scholar
  41. Ubachukwu A. A. 1995, Ap & SS, 228, 195ADSCrossRefGoogle Scholar
  42. Ubachukwu A. A., Ogwo J. N. 1998, AJP, 51, 143Google Scholar
  43. Ubachukwu A. A., Onuora L. I. 1993, Ap & SS, 209, 169ADSCrossRefGoogle Scholar
  44. Ubachukwu A. A., Okoye S. E., Onuora L. I. 1993, Proc. Of Nig. Acad. Of Sc., 5Google Scholar
  45. Ubachukwu A. A., Chukwude A. E. 2002, JAA, 23, 253Google Scholar
  46. Williams W. L., Rivera G. C. Best P. N., et al. 2018, MNRAS, 475, 3429ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • F. C. Odo
    • 1
    Email author
  • P. E. Okobi
    • 1
  • J. A. Alhassan
    • 1
  • A. A. Ubachukwu
    • 1
  1. 1.Department of Physics and AstronomyUniversity of NigeriaNsukkaNigeria

Personalised recommendations