Advertisement

Calculation of the transport coefficients of the nuclear pasta phase

  • Rana Nandi
  • Stefan Schramm
Article
  • 36 Downloads

Abstract

We calculate the transport coefficients of low-density nuclear matter, especially the nuclear pasta phase, using quantum molecular dynamics simulations. The shear viscosity as well as the thermal and electrical conductivities are determined by calculating the static structure factor of protons for all relevant density, temperature and proton fractions, using simulation data. It is found that all the transport coefficients have similar orders of magnitude as found earlier without considering the pasta phase. Our results are thus in contrast to the common belief that the pasta layer is highly resistive and therefore have important astrophysical consequences.

Keywords

Neutron stars transport properties molecular dynamics 

References

  1. Baym G., Pethick C., Sutherland P. 1971, Astrophys. J., 45, 429Google Scholar
  2. Chikazumi S., Maruyama T., Chiba S., Niita K., Iwamoto A. 2001, Phys. Rev. C, 63, 024602ADSCrossRefGoogle Scholar
  3. Chugunov A. I., Yakovlev D. G., 2005, Astron. Rep., 49, 724ADSCrossRefGoogle Scholar
  4. Dorso C. O., Giménez Molinelli P. A., López J. A. 2012, Phys. Rev. C, 86, 055805ADSCrossRefGoogle Scholar
  5. Flowers, E., Itoh, N. 1976, Astrophys. J., 206, 218ADSCrossRefGoogle Scholar
  6. Haensel P. 2001, Physics of Neutron Star Interiors, Lecture Notes in Physics 578, Springer, Berlin, p. 127Google Scholar
  7. Horowitz C. J., Pérez-García M. A., Piekarewicz J. 2004, Phys. Rev. C, 69, 045804ADSCrossRefGoogle Scholar
  8. Horowitz C. J., Berry D. K., Briggs C. M., Caplan M. E., Cumming A., Schneider A. S. 2015, Phys. Rev. Lett., 114, 031102ADSCrossRefGoogle Scholar
  9. Lorenz C. P., Ravenhall D. G., Pethick C. J. 1993, Phys. Rev. Lett., 70, 379ADSCrossRefGoogle Scholar
  10. Maruyama T., Niita K., Oyamatsu K., Maruyama T., Chiba S., Iwamoto A. 1998, Phys. Rev. C, 57, 655ADSCrossRefGoogle Scholar
  11. Nandkumar R., Pethick C. J. 1983, Mon. Not. R. Astron. Soc., 209, 511ADSCrossRefGoogle Scholar
  12. Nandi R., Bandyopadhyay D., Mishustin I., Greiner W. 2011, Astrophys. J., 736, 156ADSCrossRefGoogle Scholar
  13. Nandi R., Bandyopadhyay D. 2011, J. Phys. Conf. Ser., 312, 042016CrossRefGoogle Scholar
  14. Nandi R., Schramm S. 2016, Phys. Rev. C, 94, 025806ADSCrossRefGoogle Scholar
  15. Nandi R., Schramm S. 2017, Phys. Rev. C, 95, 065801ADSCrossRefGoogle Scholar
  16. Nandi R., Schramm S. 2018, Astrophys. J., 857, 12ADSCrossRefGoogle Scholar
  17. Newton W. G., Stone J. R. 2009, Phys. Rev. C, 79, 055801ADSCrossRefGoogle Scholar
  18. Oyamatsu K. 1993, Nucl. Phys., A561, 431ADSCrossRefGoogle Scholar
  19. Pons J. A., Viganò D., Rea N. 2013, Nat. Phys., 9, 431CrossRefGoogle Scholar
  20. Ravenhall D. G., Pethick C. J., Wilson J. R. 1983, Phys. Rev. Lett., 50, 2066ADSCrossRefGoogle Scholar
  21. Rüster S. B., Hempel M., Schaffner-Bielich J. 2006, Phys. Rev. C, 73, 035804ADSCrossRefGoogle Scholar
  22. Schneider A. S., Horowitz C. J., Hughto J., Berry D. K. 2013, Phys. Rev. C, 88, 065807ADSCrossRefGoogle Scholar
  23. Schramm S., Nandi R. 2017a, J. Phys. Conf. Ser., 861, 012021CrossRefGoogle Scholar
  24. Schramm S., Nandi R. 2017b, Int. J. Mod. Phys. Conf. Ser., 45, 1760027CrossRefGoogle Scholar
  25. Watanabe G., Sato K., Yasuoka K., Ebisuzaki T. 2003, Phys. Rev. C, 68, 035806ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Tata Institute of Fundamental ResearchMumbaiIndia
  2. 2.Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany

Personalised recommendations