Creating an isotopically similar Earth–Moon system with correct angular momentum from a giant impact

  • Bryant M. Wyatt
  • Jonathan M. Petz
  • William J. Sumpter
  • Ty R. Turner
  • Edward L. Smith
  • Baylor G. Fain
  • Taylor J. Hutyra
  • Scott A. Cook
  • John H. Gresham
  • Michael F. Hibbs
  • Shaukat N. Goderya
Article

Abstract

The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

Keywords

Accretion Earth Moon planetary formation planet-disk interaction 

Notes

Acknowledgements

We thank NVIDIA and Mellanox Technologies for the donation of hardware; Tarleton State University’s high-performance computing lab for space; Tarleton State University’s Office of Research and Innovation, and The Program for Astronomy Education and Research for funding; Robert W. Muth for insightful remarks and suggestions; and special thanks to The Wyatt Fund for supporting student travel.

References

  1. Benz, W., Slattery, W. L., Cameron, A. G. W. 1986, Icarus 66, 515ADSCrossRefGoogle Scholar
  2. Bradley, J. 1748, Philos. Trans. R. Soc. London 45, 1CrossRefGoogle Scholar
  3. Cameron, A. G. W., Ward, W. R. 1976, Proc. Lunar Planet. Sci. Conf. 7, 120–122ADSGoogle Scholar
  4. Canup, R. M. 2004, Icarus 168, 433–456ADSCrossRefGoogle Scholar
  5. Canup, R. M. 2008, Icarus 196, 518–538ADSCrossRefGoogle Scholar
  6. Canup, R. M. 2012, Science 338, 1052–1055ADSCrossRefGoogle Scholar
  7. Canup, R. M. 2013, Nature 504, 27–29ADSCrossRefGoogle Scholar
  8. Canup, R. M., Asphaug, E. 2001, Nature 412, 708–712ADSCrossRefGoogle Scholar
  9. Clery, D. 2013, Science 342, 183–185ADSCrossRefGoogle Scholar
  10. Ćuk, M., Hamilton, D. P., Lock, S. J., Stewart, S. T. 2016, Nature 539, 402–406ADSCrossRefGoogle Scholar
  11. Ćuk, M., Stewart, S. T. 2012, Science 338, 1047–1052ADSCrossRefGoogle Scholar
  12. Darwin, G. H. 1879, Philos. Trans. R. Soc. London 170, 447–538CrossRefGoogle Scholar
  13. Eiland, J. C., Salzillo, T. C., Hokr, B. H., Highland, J. L., Mayfield, W. D., Wyatt, B. M. 2014, J. Astrophys. Astr. 35, 607–618ADSCrossRefGoogle Scholar
  14. Elliott, T., Stewart, S. T. 2013, Nature 504, 90–91ADSCrossRefGoogle Scholar
  15. Goldreich, P. 1966, Rev. Geophys. 4, 411–439ADSCrossRefGoogle Scholar
  16. Hartmann, W. K., Davis, D. R. 1975, Icarus 24, 504–515ADSCrossRefGoogle Scholar
  17. Jutzi, M., Asphaug, E. 2011, Nature 496, 69–71ADSCrossRefGoogle Scholar
  18. Kokubo, E., Ida, S., Makino, J. 2000, Icarus 148, 419–436ADSCrossRefGoogle Scholar
  19. Lugmair, G. W., Shukolyukov, A. 1998, Geochim. Cosmochim. Acta 62, 2863–2886ADSCrossRefGoogle Scholar
  20. Meier, M. M. M. 2012, Nat. Geosci 5, 240–241ADSCrossRefGoogle Scholar
  21. Pahlevan, K., Stevenson, D. J. 2007, Earth Planet. Sci. Lett. 262, 438–449ADSCrossRefGoogle Scholar
  22. Reufer, A., Meier, M. M. M., Benz, W., Wieler, R. 2012, Icarus 221, 296–299ADSCrossRefGoogle Scholar
  23. Rufu, R., Aharonson, O., Perets, B. H. 2017, Nature Geoscience 10, 89–94ADSCrossRefGoogle Scholar
  24. Stevenson, D. J. 1987, Ann. Rev. Earth Planet. Sci. 15, 271–300ADSCrossRefGoogle Scholar
  25. Stevenson, D. J. 2014, Physics Today 67, 32–38CrossRefGoogle Scholar
  26. Stevenson, D. J., Halliday, A. N. 2014, Phil. Tran. R. Soc. A 372, 1–3Google Scholar
  27. Touma, J., Wisdom, J. 1994, Astron. J. 108, 1943–1961ADSCrossRefGoogle Scholar
  28. Walker, J. C. G., Zahnle, K. J. 1986, Nature 320, 600–602ADSCrossRefGoogle Scholar
  29. Wang, K., Jacoben, S. B. 2016, Nature 538, 487–490ADSCrossRefGoogle Scholar
  30. Wiechert, U., Halliday, A. N., Lee, D. C., Snyder, G. A., Taylor, L. A., Rumble, D. 2001, Science 294, 345–348ADSCrossRefGoogle Scholar
  31. Young, E. D., Kohl, I. E., Warren, P. H., Rubie, D. C., Jacobson, S. A., Morbidelli, A. 2016, Science 351, 493–496ADSCrossRefGoogle Scholar
  32. Zhang, J., Dauphas, N., Davis, A. M., Leya, I., Fedkin, A. 2012, Nat. Geosci 5, 251–255ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Bryant M. Wyatt
    • 1
  • Jonathan M. Petz
    • 1
    • 2
  • William J. Sumpter
    • 1
    • 2
  • Ty R. Turner
    • 1
    • 2
  • Edward L. Smith
    • 1
    • 2
  • Baylor G. Fain
    • 3
  • Taylor J. Hutyra
    • 1
    • 3
  • Scott A. Cook
    • 1
  • John H. Gresham
    • 1
  • Michael F. Hibbs
    • 3
  • Shaukat N. Goderya
    • 3
    • 4
  1. 1.Department of MathematicsTarleton State UniversityStephenvilleUSA
  2. 2.Department of Engineering and Computer ScienceTarleton State UniversityStephenvilleUSA
  3. 3.Department of Chemistry, Geoscience, and PhysicsTarleton State UniversityStephenvilleUSA
  4. 4.Program for Astronomy Education and ResearchTarleton State UniversityStephenvilleUSA

Personalised recommendations