Formation of Thorne–Żytkow objects in close binaries
- 27 Downloads
Abstract
Thorne–Żytkow objects (TŻOs), originally proposed by Thorne and Żytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of TŻOs in close binary stars. The Galactic birth rate of TŻOs is about \(1.5\times 10^{-4}~\hbox {yr}^{-1}\). Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of TŻOs via the above different progenitors are \(1.7\times 10^{-5}\), \(1.2\times 10^{-4}\), \(0.7\times 10^{-5}\), \(0.6\times 10^{-5}~\hbox {yr}^{-1}\), respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.
Keywords
Binary: close star: neutron X-ray: star.Notes
Acknowledgements
This work was supported by XinJiang Science Fund for Distinguished Young Scholars under No. 2014721015, the National Natural Science Foundation of China under Nos. 11473024, 11363005, 11763007 and 11503008.
References
- Bhattacharya D., van den Heuvel E. P. J. 1991, PhR, 203, 1ADSGoogle Scholar
- Biehle, G. T. 1991, ApJ, 380, 167ADSCrossRefGoogle Scholar
- Biehle, G. T. 1994, ApJ, 420, 364ADSCrossRefGoogle Scholar
- Cameron, A. G. W. 1955, ApJ, 121, 144ADSCrossRefGoogle Scholar
- Cannon, R. C., Eggleton, P. P., Zytkow, A. N., Podsiadlowski, P. 1992, ApJ, 386, 206ADSCrossRefGoogle Scholar
- de Kool, M. 1990, ApJ, 358, 189ADSCrossRefGoogle Scholar
- Eggleton, P. P., Fitchett, M. J., Tout, C. A. 1989, ApJ, 347, 998ADSCrossRefGoogle Scholar
- Goldberg, D., Mazeh, T. 1994, A&A, 282, 801ADSGoogle Scholar
- Han Z., Eggleton P. P., Podsiadlowski P., Tout C. A., Webbink R. F. 2001, in Podsiadlowski P., Rappaport S., King A. R., DAntona F., Burderi L., eds, Evolution of Binary and Multiple Star Systems, Astronomical Society of the Pacific Conference Series, Vol. 229, p 205Google Scholar
- Han, Z., Podsiadlowski, P., Eggleton, P. P. 1995, MNRAS, 272, 800ADSGoogle Scholar
- Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., Ivanova, N. 2002, MNRAS, 336, 449ADSCrossRefGoogle Scholar
- Harris, J., Zaritsky, D. 2004, AJ, 127, 1531ADSCrossRefGoogle Scholar
- Harris, J., Zaritsky, D. 2009, AJ, 138, 1243ADSCrossRefGoogle Scholar
- Hartman, J. W., Bhattacharya, D., Wijers, R., Verbunt, F. 1997, A&A, 322, 477ADSGoogle Scholar
- Hjellming, M. S., Webbink, R. F. 1987, ApJ, 318, 794ADSCrossRefGoogle Scholar
- Hobbs, G., Lorimer, D. R., Lyne, A. G., Kramer, M. 2005, MNRAS, 360, 974ADSCrossRefGoogle Scholar
- Hurley, J. R., Pols, O. R., Tout, C. A. 2000, MNRAS, 315, 543ADSCrossRefGoogle Scholar
- Hurley, J. R., Tout, C. A., Pols, O. R. 2002, MNRAS, 329, 897ADSCrossRefGoogle Scholar
- Iben, Jr., I., Livio, M. 1993, PASP, 105, 1373ADSCrossRefGoogle Scholar
- Katz, J. I. 1975, Nature, 253, 698ADSCrossRefGoogle Scholar
- Kiel, P. D., Hurley, J. R. 2006, MNRAS, 369, 1152ADSCrossRefGoogle Scholar
- Landau, L. 1938, Nature, 141, 333ADSCrossRefGoogle Scholar
- Leonard, P. J. T., Hills, J. G., Dewey, R. J. 1994, ApJL, 423, L19ADSCrossRefGoogle Scholar
- Levesque, E. M., Massey, P., Zytkow, A. N., B Morrell, N. 2014, MNRAS, 443, L94ADSCrossRefGoogle Scholar
- Liu, Q. Z., van Paradijs, J., van den Heuvel, E. P. J. 2006, A&A, 455, 1165ADSCrossRefGoogle Scholar
- Liu, X. W., Xu, R. X., van den Heuvel, E. P. J., et al. 2015, ApJ, 799, 233ADSCrossRefGoogle Scholar
- Maccarone, T. J., de Mink, S. E. 2016, MNRAS, 458, L1ADSCrossRefGoogle Scholar
- Mazeh, T., Goldberg, D., Duquennoy, A., Mayor, M. 1992, ApJ, 401, 265ADSCrossRefGoogle Scholar
- Miller, G. E., Scalo, J. M. 1979, ApJS, 41, 513ADSCrossRefGoogle Scholar
- Paczynski, B. 1976, in IAU Symposium, Vol. 73, Structure and Evolution of Close Binary Systems, ed. Eggleton, P., Mitton, S., Whelan, J. 75Google Scholar
- Pfahl, E., Rappaport, S., Podsiadlowski, P. 2002, ApJ, 573, 283ADSCrossRefGoogle Scholar
- Podsiadlowski, P., Cannon, R. C., Rees, M. J. 1995, MNRAS, 274, 485ADSCrossRefGoogle Scholar
- Ray, A., Kembhavi, A. K., Antia, H. M. 1987, A&A, 184, 164ADSGoogle Scholar
- Schneider, R., Valiante, R., Ventura, P., et al. 2014, MNRAS, 442, 1440ADSCrossRefGoogle Scholar
- Taam, R. E., Bodenheimer, P., Ostriker, J. P. 1978, ApJ, 222, 269ADSCrossRefGoogle Scholar
- Thorne, K. S., Zytkow, A. N. 1975, ApJL, 199, B L19ADSCrossRefGoogle Scholar
- Thorne, K. S., Zytkow, A. N. 1977, ApJ, 212, B 832ADSCrossRefGoogle Scholar
- Tout, C. A., Zytkow, A. N., Church, R. P., et al. 2014, MNRAS, 445, L36ADSCrossRefGoogle Scholar
- Wang, J. 2016, PhRvB, 94, 214502ADSGoogle Scholar
- Webbink, R. F. 1984, ApJ, 277, 355ADSCrossRefGoogle Scholar
- Worley, C. C., Irwin, M. J., Tout, C. A., et al. 2016, MNRAS, 459, L31ADSCrossRefGoogle Scholar
- Yisikandeer, A., Zhu, C., Wang, Z., Lü, G. 2016, JAA, 37, 22ADSGoogle Scholar
- Zhu, C., Lü, G., Wang, Z. 2015a, MNRAS, 454,1725ADSCrossRefGoogle Scholar
- Zhu, C., Lü, G., Wang, Z. 2015b, MNRAS, 451, 1561ADSCrossRefGoogle Scholar