Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 7911–7928 | Cite as

Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference

  • Gofarana Wilar
  • Yasuharu Shinoda
  • Toshikuni Sasaoka
  • Kohji FukunagaEmail author
Article
  • 254 Downloads

Abstract

Nicotine in tobacco causes psychological dependence through its rewarding effect in the central nervous system (CNS). Although nicotine dependence is explained by dopamine receptor (DR) signaling together with nicotinic acetylcholine receptors (nAChRs), the synaptic molecular mechanism underlying the interaction between dopamine receptor and nAChRs remains unclear. Since reward signaling is mediated by dopamine receptors, we hypothesized that the dopamine D2 receptor (D2R), in part, mediates the synaptic modulation of nicotine-induced conditioned place preference (CPP) in addition to dopamine D1 receptor. To investigate the involvement of D2R, wild-type (WT) and dopamine D2 receptor knockout (D2RKO) mice were assessed using the CPP task after induction of nicotine-induced CPP. As expected, D2RKO mice failed to induce CPP behaviors after repeated nicotine administration (0.5 mg/kg). When kinase signaling was assessed in the nucleus accumbens and hippocampal CA1 region after repeated nicotine administration, both Ca2+/calmodulin-dependent protein kinase (CaMKII) and extracellular signal-regulated kinase (ERK) were upregulated in WT mice but not in D2RKO mice. Likewise, nicotine-induced CPP was associated with elevation of pro- brain-derived neurotropic factor (BDNF) and BDNF protein levels in WT mice, but not in D2RKO mice. Taken together, in addition to dopamine D1 receptor signaling, dopamine D2 receptor signaling is critical for induction of nicotine-induced CPP in mice.

Keywords

Nicotine dependence Dopamine D2 receptor Conditioned placed preference Brain-derived neurotrophic factor 

Abbreviations

AcS

Nucleus accumbens shell

ACC

Anterior cingulate cortex

α4β2nAChR

Alpha 4 beta 2 nicotinic acetylcholine receptors

α7nAChRs

Alpha 7 nicotinic acetylcholine receptors

BDNF

Brain-derived neurotropic factor

CaMKII

Calcium/calmodulin-dependent protein kinase II

CHRNA4

Nicotinic acetylcholine receptor (Nachr) Α4 subunit

CPP

Conditioned placed preference

CREB

cAMP response element binding

D2RKO

Dopamine D2 receptor knockout

DLS

Dorsolateral striatum

D1R

Dopamine D1 receptors

D2R

Dopamine D2 receptors

ERK

Extracellular signal-regulated kinase

LTP

Long-term potentiation

MSN

Medium spiny neurons

NAc

Nucleus accumbens

NTRK2

Neurotrophic tyrosine kinase receptor 2

pCREB

Phosphorylation cAMP response element binding

PK

Phosphokinase C

PVDF

Polyvinylidene difluoride

PtC

Parietal association cortex

VTA

Ventral tegmental area

WT

Wild type

Notes

Conflict of Interest

The authors declare that they have no conflict of interest.

Authors Contribution

K.F. and G.W. conceived and coordinated the study and wrote the paper. G.W. performed and analyzed the experiment shown in figures. Y.S. provided technical assistance. K.F. and G.W. reviewed the results. All authors approved the final version of the manuscript.

Funding Information

This research was funded by the Grant Indonesia Endowment Fund for Education (LPDP) to G.W. and Indonesia Endowment fund for Education (LPDP) and Smoking Research Foundation and the Project of Translational and Clinical Research Core Centers, AMED, Japan (JP17dm0107071 and JP18dm0107071 to K.F.).

Compliance with Ethical Standards

All experimental animal procedures were approved by the Committee on Animal Experiments at Tohoku University, and studies were conducted in accordance with committee guidelines.

References

  1. 1.
    Benowitz NL (1999) Nicotine addiction. Prim Care 26:611–631CrossRefGoogle Scholar
  2. 2.
    Changeux J-P (2010) Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nat Rev Neurosci 11:389–401.  https://doi.org/10.1038/nrn2849 CrossRefPubMedGoogle Scholar
  3. 3.
    Leslie FM, Mojica CY, Reynaga DD (2013) Nicotinic receptors in addiction pathways. Mol Pharmacol 83:753–758.  https://doi.org/10.1124/mol.112.083659 CrossRefPubMedGoogle Scholar
  4. 4.
    De Biasi M, Dani JA (2011) Reward, addiction, withdrawal to nicotine. Annu Rev Neurosci 34:105–130.  https://doi.org/10.1146/annurev-neuro-061010-113734 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nguyen HN, Rasmussen B, Perry DC (2003) Subtype-selective up-regulation by chronic nicotine of high- affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther 307:1090–1097.  https://doi.org/10.1124/jpet.103.056408.able CrossRefPubMedGoogle Scholar
  6. 6.
    Nomikos GG, Schilström B, Hildebrand BE, Panagis G, Grenhoff J, Svensson TH (2000) Role of alpha7 nicotinic receptors in nicotine dependence and implications for psychiatric illness. Behav Brain Res 113:97–103.  https://doi.org/10.1016/S0166-4328(00)00204-7 CrossRefPubMedGoogle Scholar
  7. 7.
    Missale C, Nash SR, Robinson SW et al (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225.  https://doi.org/10.1152/physrev.1998.78.1.189 CrossRefPubMedGoogle Scholar
  8. 8.
    Gingrich JA, Caron MG (1993) Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 16:299–321.  https://doi.org/10.1146/annurev.ne.16.030193.001503 CrossRefPubMedGoogle Scholar
  9. 9.
    Inoue Y, Yao L, Hopf FW et al (2007) Nicotine and ethanol activate protein kinase A synergistically via G. Pharmacology 322:23–29.  https://doi.org/10.1124/jpet.107.120675.jority CrossRefGoogle Scholar
  10. 10.
    Baik J-H (2013) Dopamine signaling in reward-related behaviors. Front Neural Circuits 7:1–16.  https://doi.org/10.3389/fncir.2013.00152 CrossRefGoogle Scholar
  11. 11.
    Gore BB, Zweifel LS (2013) Genetic reconstruction of dopamine D1 receptor signaling in the nucleus accumbens facilitates natural and drug reward responses. J Neurosci 33:8640–8649.  https://doi.org/10.1523/JNEUROSCI.5532-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chao SZ, Lu W, Lee HK, Huganir RL, Wolf ME (2002) D1 dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures. J Neurochem 81:984–992.  https://doi.org/10.1046/j.1471-4159.2002.00877.x CrossRefPubMedGoogle Scholar
  13. 13.
    Mangiavacchi S, Wolf ME (2004) D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem 88:1261–1271.  https://doi.org/10.1046/j.1471-4159.2003.02248.x CrossRefPubMedGoogle Scholar
  14. 14.
    Kutlu MG, Burke D, Slade S, Hall BJ, Rose JE, Levin ED (2013) Role of insular cortex D1 and D2 dopamine receptors in nicotine self-administration in rats. Behav Brain Res 256:273–278.  https://doi.org/10.1016/j.bbr.2013.08.005 CrossRefPubMedGoogle Scholar
  15. 15.
    Hall BJ, Slade S, Allenby C, Kutlu MG, Levin ED (2015) Neuro-anatomic mapping of dopamine D1 receptor involvement in nicotine self-administration in rats. Neuropharmacology 99:689–695.  https://doi.org/10.1016/j.neuropharm.2015.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hamada M, Higashi H, Nairn AC, Greengard P, Nishi A (2004) Differential regulation of dopamine D1 and D2 signaling by nicotine in neostriatal neurons. J Neurochem 90:1094–1103.  https://doi.org/10.1111/j.1471-4159.2004.02574.x CrossRefPubMedGoogle Scholar
  17. 17.
    McCarthy MJ, Duchemin AM, Neff NH, Hadjiconstantinou M (2012) CREB involvement in the regulation of striatal prodynorphin by nicotine. Psychopharmacology 221:143–153.  https://doi.org/10.1007/s00213-011-2559-y CrossRefPubMedGoogle Scholar
  18. 18.
    Novak G, Seeman P, Le FB (2010) Exposure to nicotine produces an increase in dopamine D2 high receptors: a possible mechanism for dopamine hypersensitivity. Int J Neurosci 120:691–697.  https://doi.org/10.3109/00207454.2010.513462 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang SF, Xie CL, Wang Q, Liu ZG (2014) Interactions of CaMKII with dopamine D2 receptors: roles in levodopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson’s rats. Sci Rep 4:1–6.  https://doi.org/10.1038/srep06811 CrossRefGoogle Scholar
  20. 20.
    Elgersma Y (2004) Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J Neurosci 24:8410–8415.  https://doi.org/10.1523/JNEUROSCI.3622-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Irvine EE, von Hertzen LSJ, Plattner F, Giese KP (2006) αCaMKII autophosphorylation: a fast track to memory. Trends Neurosci 29:459–465.  https://doi.org/10.1016/j.tins.2006.06.009 CrossRefPubMedGoogle Scholar
  22. 22.
    Zlomuzica A, Machulska A, Roberts S, von Glischinski M, Rinck M, Lester KJ, Eley TC, Margraf J (2018) The dopamine D2 receptor mediates approach-avoidance tendencies in smokers. Eur Arch Psychiatry Clin Neurosci 268:261–268.  https://doi.org/10.1007/s00406-017-0793-y CrossRefPubMedGoogle Scholar
  23. 23.
    Takeuchi Y, Fukunaga K, Miyamoto E (2002) Activation of nuclear Ca(2+)/calmodulin-dependent protein kinase II and brain-derived neurotrophic factor gene expression by stimulation of dopamine D2 receptor in transfected NG108-15 cells. J Neurochem 82:316–328CrossRefGoogle Scholar
  24. 24.
    Kamata A, Takeuchi Y, Fukunaga K (2006) Identification of the isoforms of Ca2+/calmodulin-dependent protein kinase II and expression of brain-derived neurotrophic factor mRNAs in the substantia nigra. J Neurochem 96:195–203.  https://doi.org/10.1111/j.1471-4159.2005.03531.x CrossRefPubMedGoogle Scholar
  25. 25.
    Guillin O, Diaz J, Carroll P, Griffon N, Schwartz JC, Sokoloff P (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411:86–89.  https://doi.org/10.1038/35075076 CrossRefPubMedGoogle Scholar
  26. 26.
    Mössner R, Daniel S, Albert D, Heils A, Okladnova O, Schmitt A, Lesch KP (2000) Serotonin transporter function is modulated by brain-derived neurotrophic factor (BDNF) but not nerve growth factor (NGF). Neurochem Int 36:197–202.  https://doi.org/10.1016/S0197-0186(99)00122-9 CrossRefPubMedGoogle Scholar
  27. 27.
    Vaidya V, Marek GJ, Aghajanian GK, Duman RS (1997) 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17:2785–2795CrossRefGoogle Scholar
  28. 28.
    Berninger B, Marty S, Zafra F et al (1995) GABAergic stimulation switches from enhancing to repressing BDNF expression in rat hippocampal neurons during maturation in vitro. Development 121:2327–2335.  https://doi.org/10.1242/dev.00351 CrossRefPubMedGoogle Scholar
  29. 29.
    Knipper M, da Penha Berzaghi M, Blöchl A et al (1994) Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci 6:668–671.  https://doi.org/10.1111/j.1460-9568.1994.tb00312.x CrossRefPubMedGoogle Scholar
  30. 30.
    Kelly MA, Rubinstein M, Asa SL, Zhang G, Saez C, Bunzow JR, Allen RG, Hnasko R et al (1997) Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 19:103–113.  https://doi.org/10.1016/S0896-6273(00)80351-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Carboni E, Vacca C (2002) Conditioned place preference. Drugs Abus Neurol Rev Protoc 79:481–498Google Scholar
  32. 32.
    Yabuki Y, Fukunaga K (2013) Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience 250:394–407.  https://doi.org/10.1016/j.neuroscience.2013.07.017 CrossRefPubMedGoogle Scholar
  33. 33.
    Yabuki Y, Takahata I, Matsuo K, Owada Y, Fukunaga K (2018) Ramelteon improves post-traumatic stress disorder-like behaviors exhibited by fatty acid-binding protein 3 null mice. Mol Neurobiol 55:3577–3591.  https://doi.org/10.1007/s12035-017-0587-2 CrossRefPubMedGoogle Scholar
  34. 34.
    Risinger FO, Oakes RA (1995) Nicotine-induced conditioned place preference and conditioned place aversion in mice. Pharmacol Biochem Behav 51:457–461.  https://doi.org/10.1016/0091-3057(95)00007-J CrossRefPubMedGoogle Scholar
  35. 35.
    Laviolette SR, Lauzon NM, Bishop SF, Sun N, Tan H (2008) Dopamine signaling through D1-like versus D2-like receptors in the nucleus accumbens core versus shell differentially modulates nicotine reward sensitivity. J Neurosci 28:8025–8033.  https://doi.org/10.1523/JNEUROSCI.1371-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382:255–257CrossRefGoogle Scholar
  37. 37.
    Crespo JA (2006) Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement. J Neurosci 26:6004–6010.  https://doi.org/10.1523/JNEUROSCI.4494-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Pyakurel P, Shin M, Venton BJ (2018) Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int 114:33–41.  https://doi.org/10.1016/j.neuint.2017.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295–2303.  https://doi.org/10.1056/NEJMra0809890 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Brunzell DH, McIntosh JM (2012) Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology 37:1134–1143.  https://doi.org/10.1038/npp.2011.299 CrossRefPubMedGoogle Scholar
  41. 41.
    Govind AP, Vezina P, Green WN (2009) Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 78:756–765.  https://doi.org/10.1016/j.bcp.2009.06.011 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Besson M, Granon S, Mameli-Engvall M, Cloez-Tayarani I, Maubourguet N, Cormier A, Cazala P, David V et al (2007) Long-term effects of chronic nicotine exposure on brain nicotinic receptors. Proc Natl Acad Sci 104:8155–8160.  https://doi.org/10.1073/pnas.0702698104 CrossRefPubMedGoogle Scholar
  43. 43.
    Heishman SJ, Kleykamp BA, Singleton EG (2010) Meta-analysis of the acute effects of nicotine and smoking on human performance. Psychopharmacology 210:453–469.  https://doi.org/10.1007/s00213-010-1848-1 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mclaughlin I, Dani JA, De Biasi M (2015) The neuropharmacology of nicotine dependence. 24:99–123.  https://doi.org/10.1007/978-3-319-13482-6
  45. 45.
    Wonnacott S, Kaiser S, Mogg A, Soliakov L, Jones IW (2000) Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. Eur J Pharmacol 393:51–58.  https://doi.org/10.1016/S0014-2999(00)00005-4 CrossRefPubMedGoogle Scholar
  46. 46.
    McGranahan TM, Patzlaff NE, Grady SR et al (2011) 4 2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci 31:10891–10902.  https://doi.org/10.1523/JNEUROSCI.0937-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wooltorton JRA, Pidoplichko VI, Broide RS, Dani JA (2003) Differential desensitization and distribution of nicotinic acetylcholine receptor subtypes in midbrain dopamine areas. J Neurosci 23:3176–3185CrossRefGoogle Scholar
  48. 48.
    Garzón M, Duffy AM, Chan J, Lynch MK, Mackie K, Pickel VM (2013) Dopamine D2 and acetylcholine α7 nicotinic receptors have subcellular distributions favoring mediation of convergent signaling in the mouse ventral tegmental area. Neuroscience 252:126–143.  https://doi.org/10.1016/j.neuroscience.2013.08.008 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Dani JA (2003) Roles of dopamine signaling in nicotine addiction. Mol Psychiatry 8:255–256.  https://doi.org/10.1038/sj.mp.4001284 CrossRefPubMedGoogle Scholar
  50. 50.
    Ehlinger DG, Burke JC, McDonald CG et al (2017) Nicotine-induced and D1-receptor-dependent dendritic remodeling in a subset of dorsolateral striatum medium spiny neurons. Neuroscience 356:242–254.  https://doi.org/10.1016/j.neuroscience.2017.05.036 CrossRefPubMedGoogle Scholar
  51. 51.
    Guy EG, Fletcher PJ (2014) Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT2Creceptor agonist but not by a 5-HT2Areceptor antagonist. Pharmacol Biochem Behav 125:40–47.  https://doi.org/10.1016/j.pbb.2014.08.006 CrossRefPubMedGoogle Scholar
  52. 52.
    Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Matsumoto G, Ono T (2003) Dopamine D2 receptor-knockout changed accumbens neural response to prediction of reward associated with place in mice. Int Congr Ser 1250:493–508.  https://doi.org/10.1016/S0531-5131(03)00966-X CrossRefGoogle Scholar
  53. 53.
    Kelly MA, Rubinstein M, Phillips TJ et al (1998) Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 18:3470–3479.  https://doi.org/10.1523/jneurosci.4936-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kutlu MG, Gould TJ (2016) Nicotinic modulation of hippocampal cell signaling and associated effects on learning and memory. Physiol Behav 155:162–171.  https://doi.org/10.1016/j.physbeh.2015.12.008 CrossRefPubMedGoogle Scholar
  55. 55.
    Picconi B (2004) Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J Neurosci 24:5283–5291.  https://doi.org/10.1523/JNEUROSCI.1224-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fukunaga K, Shioda N (2012) Novel dopamine D2 receptor signaling through proteins interacting with the third cytoplasmic loop. Mol Neurobiol 45:144–152.  https://doi.org/10.1007/s12035-011-8227-8 CrossRefPubMedGoogle Scholar
  57. 57.
    Tahara S, Fukuda K, Kodama H, Kato T, Miyoshi S, Ogawa S (2001) Potassium channel blocker activates extracellular signal-regulated kinases through Pyk2 and epidermal growth factor receptor in rat cardiomyocytes. J Am Coll Cardiol 38:1554–1563CrossRefGoogle Scholar
  58. 58.
    Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–183CrossRefGoogle Scholar
  59. 59.
    Chiamulera C, Di Chio M, Tedesco V et al (2008) Nicotine-induced phosphorylation of phosphorylated cyclic AMP response element-binding protein (pCREB) in hippocampal neurons is potentiated by agrin. Neurosci Lett 442:234–238.  https://doi.org/10.1016/j.neulet.2008.07.025 CrossRefPubMedGoogle Scholar
  60. 60.
    Wu G-Y, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci 98:2808–2813.  https://doi.org/10.1073/pnas.051634198 CrossRefPubMedGoogle Scholar
  61. 61.
    Brunzell DH, Mineur YS, Neve RL, Picciotto MR (2009) Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology 34:1993–2001.  https://doi.org/10.1038/npp.2009.11 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hall FS, Drgonova J, Goeb M, Uhl GR (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28:1485–1490.  https://doi.org/10.1038/sj.npp.1300192 CrossRefPubMedGoogle Scholar
  63. 63.
    Hensler JG, Ladenheim EE, Lyons WE (2003) Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/−) mice. J Neurochem 85:1139–1147.  https://doi.org/10.1046/j.1471-4159.2003.01748.x CrossRefPubMedGoogle Scholar
  64. 64.
    Kenny PJ, File SE, Rattray M (2000) Acute nicotine decreases, and chronic nicotine increases the expression of brain-derived neurotrophic factor mRNA in rat hippocampus. Brain Res Mol Brain Res 85:234–238CrossRefGoogle Scholar
  65. 65.
    Hasbi A, Fan T, Alijaniaram M, Nguyen T, Perreault ML, O’Dowd BF, George SR (2009) Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci 106:21377–21382.  https://doi.org/10.1073/pnas.0903676106 CrossRefPubMedGoogle Scholar
  66. 66.
    Peterson DJ, Gill WD, Dose JM, Hoover DB, Pauly JR, Cummins ED, Burgess KC, Brown RW (2017) The effects of nicotine in the neonatal quinpirole rodent model of psychosis: neural plasticity mechanisms and nicotinic receptor changes. Behav Brain Res 325:17–24.  https://doi.org/10.1016/j.bbr.2017.02.029 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Beuten J, Ma JZ, Payne TJ, Dupont RT, Lou XY, Crews KM, Elston RC, Li MD (2007) Association of specific haplotypes of neurotrophic tyrosine kinase receptor 2 gene (NTRK2) with vulnerability to nicotine dependence in African-Americans and European-Americans. Biol Psychiatry 61:48–55.  https://doi.org/10.1016/j.biopsych.2006.02.023 CrossRefPubMedGoogle Scholar
  68. 68.
    Ohira K, Hayashi M (2009) A new aspect of the TrkB signaling pathway in neural plasticity. Curr Neuropharmacol 7:276–285.  https://doi.org/10.2174/157015909790031210 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kumar V (2005) Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. J Neurosci 25:11288–11299.  https://doi.org/10.1523/JNEUROSCI.2284-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lee BG, Anastasia A, Hempstead BL, Lee FS, Blendy JA (2015) Effects of the BDNF Val66Met polymorphism on anxiety-like behavior following nicotine withdrawal in mice. Nicotine Tob Res 17:1428–1435.  https://doi.org/10.1093/ntr/ntv047 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Egan MF, Kojima M, Callicott JH et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function and its val/met polymorphism in human memory and hippocampal function and suggest val/met exerts these effects by impacting intracellular. Cell 112:257–269.  https://doi.org/10.1016/j.solener.2017.10.050 CrossRefPubMedGoogle Scholar
  72. 72.
    Jamal M, Van der Does W, Elzinga BM et al (2015) Association between smoking, nicotine dependence, and BDNF Val66Met polymorphism with BDNF concentrations in serum. Nicotine Tob Res 17:323–329.  https://doi.org/10.1093/ntr/ntu151 CrossRefPubMedGoogle Scholar
  73. 73.
    Faure P, Tolu S, Valverde S, Naudé J (2014) Role of nicotinic acetylcholine receptors in regulating dopamine neuron activity. Neuroscience 282:86–100.  https://doi.org/10.1016/j.neuroscience.2014.05.040 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology, Graduate School of Pharmaceutical SciencesTohoku UniversitySendaiJapan
  2. 2.Department of Pharmacology and Clinical Pharmacy Faculty of PharmacyUniversitas PadjadjaranSumedangIndonesia
  3. 3.Department of Comparative and Experimental Medicine, Brain Research InstituteNiigata UniversityNiigataJapan

Personalised recommendations