Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 7188–7207 | Cite as

Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina

  • Joseph L. Wilkerson
  • Megan A. Stiles
  • Jami M. Gurley
  • Richard C. Grambergs
  • Xiaowu Gu
  • Michael H. Elliott
  • Richard L. Proia
  • Nawajes A. MandalEmail author
Article

Abstract

Sphingosine-1-phosphate (S1P) produced by sphingosine kinases (SPHK1 and SPHK2) is a signaling molecule involved in cell proliferation and formation of cellular junctions. In this study, we characterized the retinas of Sphk1 knockout (KO) mice by electron microscopy and immunocytochemistry. We also tested cultured Müller glia for their response to S1P. We found that S1P plays an important role in retinal and retinal pigment epithelial (RPE) structural integrity in aging mice. Ultrastructural analysis of Sphk1 KO mouse retinas aged to 15 months or raised with moderate light stress revealed a degenerated outer limiting membrane (OLM). This membrane is formed by adherens junctions between neighboring Müller glia and photoreceptor cells. We also show that Sphk1 KO mice have reduced retinal function in mice raised with moderate light stress. In vitro assays revealed that exogenous S1P modulated cytoskeletal rearrangement and increased N-cadherin production in human Müller glia cells. Aged mice also had morphological degeneration of the RPE, as well as increased lipid storage vacuoles and undigested phagosomes reminiscent of RPE in age-related macular degeneration. These findings show that SPHK1 and S1P play a vital role in the structural maintenance of the mammalian retina and retinal pigmented epithelium by supporting the formation of adherens junctions.

Keywords

Retina Outer limiting membrane Sphingosine kinase Sphingosine-1-phosphate Retinal degeneration N-cadherin 

Notes

Acknowledgments

We would like to thank the services of the Imaging Core and all the hard work done by the animal facility at the Dean McGee Eye Institute. We also want to thank Ben Fowler and Julie Crane at the Oklahoma Medical Research Foundation for their help with the super-resolution microscopy and use of the Imaging Facility to do our TEM work; Dr. Koushik Mondal from Ophthalmology, UTHSC for his help in animal experiments; Dr. Jeremy Allegood, Operational Director of Lipidomics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-5048; and VCU Lipidomics/Metabolomics Core, the NIH-NCI Cancer Center Support Grant P30 CA016059 to the VCU Massey Cancer Center, as well as a shared resource grant (S10RR031535) from the National Institutes of Health in all manuscripts of which data generated by the VCU Lipidomics/Metabolomics Core is included as well as maintain NIH compliance for NCBI registration of manuscripts that utilize data derived from the VCU Lipidomics/Metabolomics core.

Funding

NAM: NIH grants EY022071, EY025256, and EY021725 (Foundation Fighting Blindness and Research to Prevent Blindness, USA). JLW: T32EY023202 (VCU Lipidomics/Metabolomics Core: NIH grants P30 CA016059 and S10 RR031535).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12035_2019_1599_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1042 kb)

References

  1. 1.
    Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40.  https://doi.org/10.1016/j.preteyeres.2015.06.003 Google Scholar
  2. 2.
    van de Pavert SA, Kantardzhieva A, Malysheva A, Meuleman J, Versteeg I, Levelt C, Klooster J, Geiger S et al (2004) Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J Cell Sci 117(Pt 18):4169–4177.  https://doi.org/10.1242/jcs.01301 Google Scholar
  3. 3.
    van Rossum AG, Aartsen WM, Meuleman J, Klooster J, Malysheva A, Versteeg I, Arsanto JP, Le Bivic A et al (2006) Pals1/Mpp5 is required for correct localization of Crb1 at the subapical region in polarized Müller glia cells. Hum Mol Genet 15(18):2659–2672.  https://doi.org/10.1093/hmg/ddl194 Google Scholar
  4. 4.
    Stuck MW, Conley SM, Naash MI (2012) Defects in the outer limiting membrane are associated with rosette development in the Nrl−/− retina. PLoS One 7(3):e32484.  https://doi.org/10.1371/journal.pone.0032484 Google Scholar
  5. 5.
    Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208.  https://doi.org/10.1109/RBME.2010.2084567 Google Scholar
  6. 6.
    Oishi A, Hata M, Shimozono M, Mandai M, Nishida A, Kurimoto Y (2010) The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am J Ophthalmol 150(1):27–32 e21.  https://doi.org/10.1016/j.ajo.2010.02.012 Google Scholar
  7. 7.
    Wolf-Schnurrbusch UE, Enzmann V, Brinkmann CK, Wolf S (2008) Morphologic changes in patients with geographic atrophy assessed with a novel spectral OCT-SLO combination. Invest Ophthalmol Vis Sci 49(7):3095–3099.  https://doi.org/10.1167/iovs.07-1460 Google Scholar
  8. 8.
    Landa G, Gentile RC, Garcia PM, Muldoon TO, Rosen RB (2012) External limiting membrane and visual outcome in macular hole repair: spectral domain OCT analysis. Eye (Lond) 26(1):61–69.  https://doi.org/10.1038/eye.2011.237 Google Scholar
  9. 9.
    Chen X, Zhang L, Sohn EH, Lee K, Niemeijer M, Chen J, Sonka M, Abramoff MD (2012) Quantification of external limiting membrane disruption caused by diabetic macular edema from SD-OCT. Invest Ophthalmol Vis Sci 53(13):8042–8048.  https://doi.org/10.1167/iovs.12-10083 Google Scholar
  10. 10.
    Scarinci F, Shaarawy A, Narala R, Jampol LM, Fawzi AA (2016) Loss of external limiting membrane integrity predicts progression of hydroxychloroquine retinal toxicity after drug discontinuation. Retina 36(10):1951–1957.  https://doi.org/10.1097/IAE.0000000000001217 Google Scholar
  11. 11.
    Narala R, Scarinci F, Shaarawy A, Simonett JM, Flaxel CJ, Fawzi AA (2016) Longitudinal quantitative evaluation of photoreceptor volume following repair of macula-off retinal detachment. Retina 36(8):1432–1438.  https://doi.org/10.1097/IAE.0000000000000971 Google Scholar
  12. 12.
    Scarinci F, Fawzi AA, Shaarawy A, Simonett JM, Jampol LM (2017) Longitudinal quantitative evaluation of outer retinal lesions in acute posterior multifocal Placoid pigment Epitheliopathy using optical coherence tomography. Retina 37(5):851–857.  https://doi.org/10.1097/IAE.0000000000001245 Google Scholar
  13. 13.
    Williams DS, Arikawa K, Paallysaho T (1990) Cytoskeletal components of the adherens junctions between the photoreceptors and the supportive Müller cells. J Comp Neurol 295(1):155–164.  https://doi.org/10.1002/cne.902950113 Google Scholar
  14. 14.
    Paik JH, Chae S, Lee MJ, Thangada S, Hla T (2001) Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and rho-dependent activation of alpha vbeta3- and beta1-containing integrins. J Biol Chem 276(15):11830–11837.  https://doi.org/10.1074/jbc.M009422200 Google Scholar
  15. 15.
    Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5(8):777–782.  https://doi.org/10.1038/sj.embor.7400208 Google Scholar
  16. 16.
    Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, Zhao R, Milstien S et al (2012) Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res 72(3):726–735.  https://doi.org/10.1158/0008-5472.CAN-11-2167 Google Scholar
  17. 17.
    Zhang H, Buckley NE, Gibson K, Spiegel S (1990) Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem 265(1):76–81Google Scholar
  18. 18.
    Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25(24):11113–11121.  https://doi.org/10.1128/MCB.25.24.11113-11121.2005 Google Scholar
  19. 19.
    Lee MJ, Thangada S, Claffey KP, Ancellin N, Liu CH, Kluk M, Volpi M, Sha'afi RI et al (1999) Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99(3):301–312Google Scholar
  20. 20.
    Mehta D, Konstantoulaki M, Ahmmed GU, Malik AB (2005) Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells. J Biol Chem 280(17):17320–17328.  https://doi.org/10.1074/jbc.M411674200 Google Scholar
  21. 21.
    Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V et al (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23(3):600–610.  https://doi.org/10.1016/j.devcel.2012.07.015 Google Scholar
  22. 22.
    Allende ML, Sasaki T, Kawai H, Olivera A, Mi Y, van Echten-Deckert G, Hajdu R, Rosenbach M et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279(50):52487–52492.  https://doi.org/10.1074/jbc.M406512200 Google Scholar
  23. 23.
    Qi H, Priyadarsini S, Nicholas SE, Sarker-Nag A, Allegood J, Chalfant CE, Mandal NA, Karamichos D (2017) Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients. J Lipid Res 58(4):636–648.  https://doi.org/10.1194/jlr.M067264 Google Scholar
  24. 24.
    Chen H, Tran JT, Eckerd A, Huynh TP, Elliott MH, Brush RS, Mandal NA (2013) Inhibition of de novo ceramide biosynthesis by FTY720 protects rat retina from light-induced degeneration. J Lipid Res 54(6):1616–1629.  https://doi.org/10.1194/jlr.M035048 Google Scholar
  25. 25.
    Stiles M, Qi H, Sun E, Tan J, Porter H, Allegood J, Chalfant CE, Yasumura D et al (2016) Sphingolipid profile alters in retinal dystrophic P23H-1 rats and systemic FTY720 can delay retinal degeneration. J Lipid Res 57(5):818–831.  https://doi.org/10.1194/jlr.M063719 Google Scholar
  26. 26.
    Connor KM, Krah NM, Dennison RJ, Aderman CM, Chen J, Guerin KI, Sapieha P, Stahl A et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573.  https://doi.org/10.1038/nprot.2009.187 Google Scholar
  27. 27.
    Limb GA, Salt TE, Munro PM, Moss SE, Khaw PT (2002) In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Invest Ophthalmol Vis Sci 43(3):864–869Google Scholar
  28. 28.
    Wu M, Yang S, Elliott MH, Fu D, Wilson K, Zhang J, Du M, Chen J et al (2012) Oxidative and endoplasmic reticulum stresses mediate apoptosis induced by modified LDL in human retinal Müller cells. Invest Ophthalmol Vis Sci 53(8):4595–4604.  https://doi.org/10.1167/iovs.12-9910 Google Scholar
  29. 29.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682.  https://doi.org/10.1038/nmeth.2019 Google Scholar
  30. 30.
    Mehalow AK, Kameya S, Smith RS, Hawes NL, Denegre JM, Young JA, Bechtold L, Haider NB et al (2003) CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina. Hum Mol Genet 12(17):2179–2189.  https://doi.org/10.1093/hmg/ddg232 Google Scholar
  31. 31.
    Wright CB, Redmond TM, Nickerson JM (2015) A history of the classical visual cycle. Prog Mol Biol Transl Sci 134:433–448.  https://doi.org/10.1016/bs.pmbts.2015.06.009 Google Scholar
  32. 32.
    Kevany BM, Palczewski K (2010) Phagocytosis of retinal rod and cone photoreceptors. Physiology (Bethesda) 25(1):8–15.  https://doi.org/10.1152/physiol.00038.2009 Google Scholar
  33. 33.
    Young RW, Bok D (1969) Participation of the retinal pigment epithelium in the rod outer segment renewal process. J Cell Biol 42(2):392–403Google Scholar
  34. 34.
    LaVail MM (1976) Rod outer segment disk shedding in rat retina: Relationship to cyclic lighting. Science 194(4269):1071–1074Google Scholar
  35. 35.
    Sensken SC, Bode C, Nagarajan M, Peest U, Pabst O, Graler MH (2010) Redistribution of sphingosine 1-phosphate by sphingosine kinase 2 contributes to lymphopenia. J Immunol 184(8):4133–4142.  https://doi.org/10.4049/jimmunol.0903358 Google Scholar
  36. 36.
    Zemann B, Kinzel B, Müller M, Reuschel R, Mechtcheriakova D, Urtz N, Bornancin F, Baumruker T et al (2006) Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107(4):1454–1458.  https://doi.org/10.1182/blood-2005-07-2628 Google Scholar
  37. 37.
    Kharel Y, Raje M, Gao M, Gellett AM, Tomsig JL, Lynch KR, Santos WL (2012) Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. Biochem J 447(1):149–157.  https://doi.org/10.1042/BJ20120609 Google Scholar
  38. 38.
    Mendelson K, Evans T, Hla T (2014) Sphingosine 1-phosphate signalling. Development 141(1):5–9.  https://doi.org/10.1242/dev.094805 Google Scholar
  39. 39.
    Pyszko JA, Strosznajder JB (2014) The key role of sphingosine kinases in the molecular mechanism of neuronal cell survival and death in an experimental model of Parkinson’s disease. Folia Neuropathol 52(3):260–269Google Scholar
  40. 40.
    Pchejetski D, Kunduzova O, Dayon A, Calise D, Seguelas MH, Leducq N, Seif I, Parini A et al (2007) Oxidative stress-dependent sphingosine kinase-1 inhibition mediates monoamine oxidase A-associated cardiac cell apoptosis. Circ Res 100(1):41–49.  https://doi.org/10.1161/01.RES.0000253900.66640.34 Google Scholar
  41. 41.
    Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE et al (2000) Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 106(8):951–961.  https://doi.org/10.1172/JCI10905 Google Scholar
  42. 42.
    Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, Hla T (2004) Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 18(19):2392–2403.  https://doi.org/10.1101/gad.1227804 Google Scholar
  43. 43.
    Malicki J, Jo H, Pujic Z (2003) Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Dev Biol 259(1):95–108Google Scholar
  44. 44.
    Pujic Z, Malicki J (2001) Mutation of the zebrafish glass onion locus causes early cell-nonautonomous loss of neuroepithelial integrity followed by severe neuronal patterning defects in the retina. Dev Biol 234(2):454–469.  https://doi.org/10.1006/dbio.2001.0251 Google Scholar
  45. 45.
    Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M et al (2002) Parachute/n-cadherin is required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 129(14):3281–3294Google Scholar
  46. 46.
    Park B, Alves CH, Lundvig DM, Tanimoto N, Beck SC, Huber G, Richard F, Klooster J et al (2011) PALS1 is essential for retinal pigment epithelium structure and neural retina stratification. J Neurosci 31(47):17230–17241.  https://doi.org/10.1523/JNEUROSCI.4430-11.2011 Google Scholar
  47. 47.
    Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G et al (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell 125(3):535–548.  https://doi.org/10.1016/j.cell.2006.02.045 Google Scholar
  48. 48.
    Esche M, Hirrlinger PG, Rillich K, Yafai Y, Pannicke T, Reichenbach A, Weick M (2010) Signalling of sphingosine-1-phosphate in Müller glial cells via the S1P/EDG-family of G-protein-coupled receptors. Neurosci Lett 480(2):101–105.  https://doi.org/10.1016/j.neulet.2010.06.014 Google Scholar
  49. 49.
    Simon MV, Prado Spalm FH, Politi LE, Rotstein NP (2015) Sphingosine-1-phosphate is a crucial signal for migration of retina Müller glial cells. Invest Ophthalmol Vis Sci 56(10):5808–5815.  https://doi.org/10.1167/iovs.14-16195 Google Scholar
  50. 50.
    Wang L, Clark ME, Crossman DK, Kojima K, Messinger JD, Mobley JA, Curcio CA (2010) Abundant lipid and protein components of drusen. PLoS One 5(4):e10329.  https://doi.org/10.1371/journal.pone.0010329 Google Scholar
  51. 51.
    Chen H, Chan AY, Stone DU, Mandal NA (2014) Beyond the cherry-red spot: Ocular manifestations of sphingolipid-mediated neurodegenerative and inflammatory disorders. Surv Ophthalmol 59(1):64–76.  https://doi.org/10.1016/j.survophthal.2013.02.005 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joseph L. Wilkerson
    • 1
    • 2
  • Megan A. Stiles
    • 2
    • 3
  • Jami M. Gurley
    • 2
    • 3
  • Richard C. Grambergs
    • 4
  • Xiaowu Gu
    • 2
    • 3
  • Michael H. Elliott
    • 2
    • 3
  • Richard L. Proia
    • 5
  • Nawajes A. Mandal
    • 1
    • 2
    • 3
    • 4
    • 6
    • 7
    Email author
  1. 1.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Dean A. McGee Eye InstituteOklahoma CityUSA
  3. 3.Department of OphthalmologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  4. 4.Department of Ophthalmology and Anatomy and NeurobiologyUniversity of Tennessee Health Sciences CenterMemphisUSA
  5. 5.Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  6. 6.Department of Ophthalmology, Hamilton Eye InstituteUniversity of Tennessee Health Sciences CenterMemphisUSA
  7. 7.Department of Anatomy and Neurobiology, Hamilton Eye InstituteUniversity of Tennessee Health Sciences CenterMemphisUSA

Personalised recommendations