Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 7022–7031 | Cite as

Network and Pathway-Based Analysis of Single-Nucleotide Polymorphism of miRNA in Temporal Lobe Epilepsy

  • Wenbiao Xiao
  • Yanhao Wu
  • Jianjian Wang
  • Zhaohui Luo
  • Lili Long
  • Na Deng
  • Shangwei Ning
  • Yi Zeng
  • Hongyu LongEmail author
  • Bo XiaoEmail author
Article

Abstract

Temporal lobe epilepsy (TLE) is a complex disease with its pathogenetic mechanism still unclear. Single-nucleotide polymorphisms (SNPs) of miRNA (miRSNPs) are SNPs located on miRNA genes or target sites of miRNAs, which have been proved to be associated with neuropsychic disease development by interfering with miRNA-mediated regulatory function. In this study, we integrated TLE–related risk genes and risk pathways multi-dimensionally based on public data resources. Furthermore, we systematically screened candidate functional miRSNPs for TLE and constructed a TLE-associated pathway-based miRSNP switching network, which included 92 miRNAs that target 12 TLE risk pathways. Moreover, we dissected thoroughly the correlation between 5 risk genes of 4 risk pathways and TLE development. Additionally, the biological function of several candidate miRSNPs were validated by luciferase reporter assay. In silico approach facilitates to select potential “miRSNP-miRNA-risk gene-pathway” axis for experimental validation, which provided new insights into the mechanism of miRSNPs as potential genetic risk factors of TLE.

Keywords

Temporal lobe epilepsy (TLE) Risk gene miRSNP Pathway Network 

Notes

Funding Information

This study was supported financially by Omics-based precision medicine of epilepsy being entrusted by Key Research Project of the Ministry of Science and Technology of China (No. 2016YFC0904400), the National Natural Science Foundation of China (No. 81671299 to B.X and No. 81401078 to H.Y.L), the Science and Technology Department Funds of Hunan Province Key Project (No. 2016JC2057 to B.X. and No. 2018JJ3822 to H.Y.L), and Independent Exploration and Innovation project for postgraduate of Central South University (No. 2018zzts248 to W.B.X).

Compliance with Ethical Standard

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1584_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)
12035_2019_1584_MOESM2_ESM.xlsx (70 kb)
ESM 2 (XLSX 70.0 kb)
12035_2019_1584_MOESM3_ESM.xlsx (14 kb)
ESM 3 (XLSX 14 kb)
12035_2019_1584_MOESM4_ESM.xlsx (21 kb)
ESM 4 (XLSX 20 kb)
12035_2019_1584_MOESM5_ESM.xlsx (35 kb)
ESM 5 (XLSX 35 kb)

References

  1. 1.
    Tellez-Zenteno JF, Hernandez-Ronquillo L (2012) A review of the epidemiology of temporal lobe epilepsy. Epilepsy Res Treat 2012:630853Google Scholar
  2. 2.
    Blumcke I, Thom M, Aronica E, Armstrong DD, Bartolomei F, Bernasconi A et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE commission on diagnostic methods. Epilepsia 54:1315–1329CrossRefGoogle Scholar
  3. 3.
    Gambardella A, Manna I, Labate A, Chifari R, La Russa A, Serra P et al (2003) GABA(B) receptor 1 polymorphism (G1465A) is associated with temporal lobe epilepsy. Neurology 60:560–563CrossRefGoogle Scholar
  4. 4.
    Lv RJ, He JS, Fu YH, Shao XQ, Wu LW, Lu Q, Jin LR, Liu H (2011) A polymorphism in CALHM1 is associated with temporal lobe epilepsy. Epilepsy Behav 20:681–685CrossRefGoogle Scholar
  5. 5.
    Li Z, Ding C, Gong X, Wang X, Cui T (2016) Apolipoprotein E epsilon4 allele was associated with nonlesional mesial temporal lobe epilepsy in Han Chinese population. Medicine (Baltimore) 95:e2894CrossRefGoogle Scholar
  6. 6.
    Kasperaviciute D, Catarino CB, Matarin M, Leu C, Novy J, Tostevin A et al (2013) Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 136:3140–3150CrossRefGoogle Scholar
  7. 7.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P et al (2014) The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42:D1001–D1006CrossRefGoogle Scholar
  8. 8.
    Jia P, Zhao Z (2014) Network-assisted analysis to prioritize GWAS results: principles, methods and perspectives. Hum Genet 133:125–138CrossRefGoogle Scholar
  9. 9.
    Alexander RP, Fang G, Rozowsky J, Snyder M, Gerstein MB (2010) Annotating non-coding regions of the genome. Nat Rev Genet 11:559–571CrossRefGoogle Scholar
  10. 10.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  11. 11.
    Djuranovic S, Nahvi A, Green R (2012) miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336:237–240CrossRefGoogle Scholar
  12. 12.
    Alsharafi WA, Xiao B, Abuhamed MM, Luo Z (2015) miRNAs: biological and clinical determinants in epilepsy. Front Mol Neurosci 8:59CrossRefGoogle Scholar
  13. 13.
    Jimenez-Mateos EM, Henshall DC (2013) Epilepsy and microRNA. Neuroscience 238:218–229CrossRefGoogle Scholar
  14. 14.
    Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G et al (2012) Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med 18:1087–1094CrossRefGoogle Scholar
  15. 15.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefGoogle Scholar
  16. 16.
    Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A 104:3300–3305CrossRefGoogle Scholar
  17. 17.
    Saba R, Booth S (2013) Polymorphisms affecting miRNA regulation: a new level of genetic variation affecting disorders and diseases of the human CNS. Future Neurol 8:411–431CrossRefGoogle Scholar
  18. 18.
    Yuan M, Zhan Q, Duan X, Song B, Zeng S, Chen X, Yang Q, Xia J (2013) A functional polymorphism at miR-491-5p binding site in the 3′-UTR of MMP-9 gene confers increased risk for atherosclerotic cerebral infarction in a Chinese population. Atherosclerosis 226:447–452CrossRefGoogle Scholar
  19. 19.
    Panjwani N, Wilson MD, Addis L, Crosbie J, Wirrell E, Auvin S, Caraballo RH, Kinali M et al (2016) A microRNA-328 binding site in PAX6 is associated with centrotemporal spikes of rolandic epilepsy. Ann Clin Transl Neurol 3:512–522CrossRefGoogle Scholar
  20. 20.
    Cui L, Tao H, Wang Y, Liu Z, Xu Z, Zhou H, Cai Y, Yao L et al (2015) A functional polymorphism of the microRNA-146a gene is associated with susceptibility to drug-resistant epilepsy and seizures frequency. Seizure 27:60–65CrossRefGoogle Scholar
  21. 21.
    Manna I, Labate A, Borzi G, Mumoli L, Cavalli SM, Sturniolo M et al (2016) An SNP site in pri-miR-124, a brain expressed miRNA gene, no contribution to mesial temporal lobe epilepsy in an Italian sample. Neurol Sci 37:1335–1339CrossRefGoogle Scholar
  22. 22.
    Manna I, Labate A, Mumoli L, Pantusa M, Ferlazzo E, Aguglia U, Quattrone A, Gambardella A (2013) Relationship between genetic variant in pre-microRNA-146a and genetic predisposition to temporal lobe epilepsy: a case-control study. Gene 516:181–183CrossRefGoogle Scholar
  23. 23.
    Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefGoogle Scholar
  24. 24.
    Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  25. 25.
    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29CrossRefGoogle Scholar
  26. 26.
    Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157CrossRefGoogle Scholar
  27. 27.
    Li X, Jiang W, Li W, Lian B, Wang S, Liao M, Chen X, Wang Y et al (2012) Dissection of human MiRNA regulatory influence to subpathway. Brief Bioinform 13:175–186CrossRefGoogle Scholar
  28. 28.
    Baron M, Kudin AP, Kunz WS (2007) Mitochondrial dysfunction in neurodegenerative disorders. Biochem Soc Trans 35:1228–1231CrossRefGoogle Scholar
  29. 29.
    Tai XY, Koepp M, Duncan JS, Fox N, Thompson P, Baxendale S, Liu JYW, Reeves C et al (2016) Hyperphosphorylated tau in patients with refractory epilepsy correlates with cognitive decline: a study of temporal lobe resections. Brain 139:2441–2455CrossRefGoogle Scholar
  30. 30.
    Bernasconi N (2016) Is epilepsy a curable neurodegenerative disease? Brain 139:2336–2337CrossRefGoogle Scholar
  31. 31.
    Davidson YS, Raby S, Foulds PG, Robinson A, Thompson JC, Sikkink S, Yusuf I, Amin H et al (2011) TDP-43 pathological changes in early onset familial and sporadic Alzheimer’s disease, late onset Alzheimer’s disease and Down’s syndrome: association with age, hippocampal sclerosis and clinical phenotype. Acta Neuropathol 122:703–713CrossRefGoogle Scholar
  32. 32.
    Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136CrossRefGoogle Scholar
  33. 33.
    Leite JP, Neder L, Arisi GM, Carlotti CJ, Assirati JA, Moreira JE (2005) Plasticity, synaptic strength, and epilepsy: what can we learn from ultrastructural data? Epilepsia 46(Suppl 5):134–141CrossRefGoogle Scholar
  34. 34.
    Vezzani A, Friedman A, Dingledine RJ (2013) The role of inflammation in epileptogenesis. Neuropharmacology 69:16–24CrossRefGoogle Scholar
  35. 35.
    Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15:144CrossRefGoogle Scholar
  36. 36.
    Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY et al (2011) MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39:825–836CrossRefGoogle Scholar
  37. 37.
    Ma J, Guo R, Wang T, Pan X, Lei X (2015) Let-7b binding site polymorphism in the B-cell lymphoma-extra large 3′UTR is associated with fluorouracil resistance of hepatocellular carcinoma. Mol Med Rep 11:677–681CrossRefGoogle Scholar
  38. 38.
    Henshall DC, Clark RS, Adelson PD, Chen M, Watkins SC, Simon RP (2000) Alterations in bcl-2 and caspase gene family protein expression in human temporal lobe epilepsy. Neurology 55:250–257CrossRefGoogle Scholar
  39. 39.
    Yan Y, Xie R, Zhang Q, Zhu X, Han J, Xia R (2017) Bcl-xL/Bak interaction and regulation by miRNA let-7b in the intrinsic apoptotic pathway of stored platelets. Platelets:1–6Google Scholar
  40. 40.
    McKiernan RC, Jimenez-Mateos EM, Bray I, Engel T, Brennan GP, Sano T et al (2012) Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One 7:e35921CrossRefGoogle Scholar
  41. 41.
    Han CL, Ge M, Liu YP, Zhao XM, Wang KL, Chen N, Hu W, Zhang JG et al (2018) Long non-coding RNA H19 contributes to apoptosis of hippocampal neurons by inhibiting let-7b in a rat model of temporal lobe epilepsy. Cell Death Dis 9:617CrossRefGoogle Scholar
  42. 42.
    Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430CrossRefGoogle Scholar
  43. 43.
    Liu Z, Li Z, Zhi X, Du Y, Lin Z, Wu J (2018) Identification of de novo DNMT3A mutations that cause west syndrome by using whole-exome sequencing. Mol Neurobiol 55:2483–2493CrossRefGoogle Scholar
  44. 44.
    Zhu Q, Wang L, Zhang Y, Zhao FH, Luo J, Xiao Z, Chen GJ, Wang XF (2012) Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci 46:420–426CrossRefGoogle Scholar
  45. 45.
    Xiao W, Cao Y, Long H, Luo Z, Li S, Deng N, Wang J, Lu X et al (2018) Genome-wide DNA methylation patterns analysis of noncoding RNAs in temporal lobe epilepsy patients. Mol Neurobiol 55:793–803CrossRefGoogle Scholar
  46. 46.
    Kobow K, Kaspi A, Harikrishnan KN, Kiese K, Ziemann M, Khurana I, Fritzsche I, Hauke J et al (2013) Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol 126:741–756CrossRefGoogle Scholar
  47. 47.
    Muinos-Gimeno M, Montfort M, Bayes M, Estivill X, Espinosa-Parrilla Y (2010) Design and evaluation of a panel of single-nucleotide polymorphisms in microRNA genomic regions for association studies in human disease. Eur J Hum Genet 18:218–226CrossRefGoogle Scholar
  48. 48.
    The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet 43:969–976CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Department of Respiratory Medicine, Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Department of Neurology, the Second Affiliated HospitalHarbin Medical UniversityHarbinChina
  4. 4.College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
  5. 5.Department of Geriatrics, Second Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations