Molecular Neurobiology

, Volume 56, Issue 10, pp 6952–6963 | Cite as

Klotho-Mediated Changes in Shelterin Complex Promote Cytotoxic Autophagy and Apoptosis in Amitriptyline-Treated Hippocampal Neuronal Cells

  • Jennifer MytychEmail author
  • Przemyslaw Solek
  • Anna Tabecka-Lonczynska
  • Marek Koziorowski


Amitriptyline, antidepressant frequently prescribed for treatment of depressive disorders and several neuropathic and inflammatory diseases, has been shown to cause neurotoxic effects. This effect has been partially linked with increased oxidative stress and apoptosis initiation; however, the exact mechanism is still unknown. Klotho protein due to its neuroprotective characteristics seems to be involved in the amitriptyline-mediated neurotoxicity. In this study, we have evaluated the effect of klotho silencing on mouse hippocampal cells exposed to amitriptyline. We show, for the first time, that klotho silencing intensified in hippocampal neurons amitriptyline-induced imbalance in oxido-nitrosative and mineral homeostasis, genomic instability associated with telomere dysfunction what resulted in p16- and p53/p21-mediated cell cycle arrest and activation of autophagy and apoptotic cell death in consequence. Therefore, these results indicate that klotho serves as a part of the cellular defense mechanism engaged in the protection of neurons against amitriptyline-mediated toxicity.


Klotho Amitriptyline Telomeres Autophagy Apoptosis Hippocampal cells 



The authors would like to thank Slawomir Nowak, MSc, for providing antibodies against HMOX-1 and HMOX-2.

Authors’ Contributions

JM performed the experiments, analyzed the data, carried out data interpretation, wrote the paper, and conceived and designed the experiments. PS performed the experiments, analyzed the data, carried out data interpretation, and wrote the paper; AT-L performed the experiments. MK conceived and designed the experiments, and carried out data interpretation.


This work was supported by the “Preludium” no. UMO-2014/15/N/NZ7/04097 funded by the Polish National Science Center.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12035_2019_1575_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 11 kb)


  1. 1.
    Villanueva-Paz M, Cordero MD, Pavon AD, Vega BC, Cotan D, De la Mata M, Oropesa-Avila M, Alcocer-Gomez E et al (2016) Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells. Genes Cancer 7(7–8):260–277. Google Scholar
  2. 2.
    Sudoh Y, Desai SP, Haderer AE, Sudoh S, Gerner P, Anthony DC, De Girolami U, Wang GK (2004) Neurologic and histopathologic evaluation after high-volume intrathecal amitriptyline. Reg Anesth Pain Med 29(5):434–440CrossRefGoogle Scholar
  3. 3.
    Karlsson H, Gu Y, DePierre J, Nassberger L (1998) Induction of apoptosis in proliferating lymphocytes by tricyclic antidepressants. Apoptosis 3(4):255–260CrossRefGoogle Scholar
  4. 4.
    Viola G, Miolo G, Vedaldi D, Dall’Acqua F (2000) In vitro studies of the phototoxic potential of the antidepressant drugs amitriptyline and imipramine. Farmaco 55(3):211–218CrossRefGoogle Scholar
  5. 5.
    Serafeim A, Holder MJ, Grafton G, Chamba A, Drayson MT, Luong QT, Bunce CM, Gregory CD et al (2003) Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood 101(8):3212–3219. CrossRefGoogle Scholar
  6. 6.
    Cordero MD, Sanchez-Alcazar JA, Bautista-Ferrufino MR, Carmona-Lopez MI, Illanes M, Rios MJ, Garrido-Maraver J, Alcudia A et al (2010) Acute oxidant damage promoted on cancer cells by amitriptyline in comparison with some common chemotherapeutic drugs. Anti-Cancer Drugs 21(10):932–944. CrossRefGoogle Scholar
  7. 7.
    Lirk P, Haller I, Hausott B, Ingorokva S, Deibl M, Gerner P, Klimaschewski L (2006) The neurotoxic effects of amitriptyline are mediated by apoptosis and are effectively blocked by inhibition of caspase activity. Anesth Analg 102(6):1728–1733. CrossRefGoogle Scholar
  8. 8.
    Lee MY, Hong S, Kim N, Shin KS, Kang SJ (2015) Tricyclic antidepressants amitriptyline and desipramine induced neurotoxicity associated with Parkinson’s disease. Mol Cells 38(8):734–740. CrossRefGoogle Scholar
  9. 9.
    Slamon ND, Ward TH, Butler J, Pentreath VW (2001) Assessment of DNA damage in C6 glioma cells after antidepressant treatment using an alkaline comet assay. Arch Toxicol 75(4):243–250CrossRefGoogle Scholar
  10. 10.
    Hassanane MS, Hafiz N, Radwan W, El-Ghor AA (2012) Genotoxic evaluation for the tricyclic antidepressant drug, amitriptyline. Drug Chem Toxicol 35(4):450–455. CrossRefGoogle Scholar
  11. 11.
    Needham BL, Mezuk B, Bareis N, Lin J, Blackburn EH, Epel ES (2015) Depression, anxiety and telomere length in young adults: evidence from the National Health and nutrition examination survey. Mol Psychiatry 20(4):520–528. CrossRefGoogle Scholar
  12. 12.
    Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ et al (2015) Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 35(6):2358–2371. CrossRefGoogle Scholar
  13. 13.
    Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, Sturm VE, Kim D et al (2014) Life extension factor klotho enhances cognition. Cell Rep 7(4):1065–1076. CrossRefGoogle Scholar
  14. 14.
    Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, Harris DA, Abraham CR (2014) The neuroprotective effect of klotho is mediated via regulation of members of the redox system. J Biol Chem 289(35):24700–24715. CrossRefGoogle Scholar
  15. 15.
    German DC, Khobahy I, Pastor J, Kuro OM, Liu X (2012) Nuclear localization of klotho in brain: An anti-aging protein. Neurobiol Aging 33(7):1483 e1425–1483 e1430. CrossRefGoogle Scholar
  16. 16.
    Mytych J, Wos I, Solek P, Koziorowski M (2017) Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res 350(2):358–367. CrossRefGoogle Scholar
  17. 17.
    Mytych J, Lewinska A, Bielak-Zmijewska A, Grabowska W, Zebrowski J, Wnuk M (2014) Nanodiamond-mediated impairment of nucleolar activity is accompanied by oxidative stress and DNMT2 upregulation in human cervical carcinoma cells. Chem Biol Interact 220:51–63. CrossRefGoogle Scholar
  18. 18.
    O’Callaghan NJ, Fenech M (2011) A quantitative PCR method for measuring absolute telomere length. Biol Proced Online 13:3. CrossRefGoogle Scholar
  19. 19.
    Solek P, Majchrowicz L, Koziorowski M (2018) Aloe arborescens juice prevents EMF-induced oxidative stress and thus protects from pathophysiology in the male reproductive system in vitro. Environ Res 166:141–149. CrossRefGoogle Scholar
  20. 20.
    Pampalona J, Soler D, Genesca A, Tusell L (2010) Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies. Mutat Res 683(1–2):16–22. CrossRefGoogle Scholar
  21. 21.
    Brobey RK, German D, Sonsalla PK, Gurnani P, Pastor J, Hsieh CC, Papaconstantinou J, Foster PP et al (2015) Klotho protects dopaminergic neuron oxidant-induced degeneration by modulating ASK1 and p38 MAPK signaling pathways. PLoS One 10(10):e0139914. CrossRefGoogle Scholar
  22. 22.
    Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL (2014) Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci 21:3. CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Wang H, Li J, Jimenez DA, Levitan ES, Aizenman E, Rosenberg PA (2004) Peroxynitrite-induced neuronal apoptosis is mediated by intracellular zinc release and 12-lipoxygenase activation. J Neurosci 24(47):10616–10627. CrossRefGoogle Scholar
  24. 24.
    Six I, Okazaki H, Gross P, Cagnard J, Boudot C, Maizel J, Drueke TB, Massy ZA (2014) Direct, acute effects of klotho and FGF23 on vascular smooth muscle and endothelium. PLoS One 9(4):e93423. CrossRefGoogle Scholar
  25. 25.
    Vincent SR (2010) Nitric oxide neurons and neurotransmission. Prog Neurobiol 90(2):246–255. CrossRefGoogle Scholar
  26. 26.
    Parween S, Varghese DS, Ardah MT, Prabakaran AD, Mensah-Brown E, Emerald BS, Ansari SA (2017) Higher O-GlcNAc levels are associated with defects in progenitor proliferation and premature neuronal differentiation during in-vitro human embryonic cortical neurogenesis. Front Cell Neurosci 11:415. CrossRefGoogle Scholar
  27. 27.
    Liu C, Li J (2018) O-GlcNAc: A sweetheart of the cell cycle and DNA damage response. Front Endocrinol (Lausanne) 9:415. CrossRefGoogle Scholar
  28. 28.
    Diotti R, Loayza D (2011) Shelterin complex and associated factors at human telomeres. Nucleus 2(2):119–135. CrossRefGoogle Scholar
  29. 29.
    Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13(17):1549–1556CrossRefGoogle Scholar
  30. 30.
    Opresko PL, Fan J, Danzy S, Wilson DM 3rd, Bohr VA (2005) Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res 33(4):1230–1239. CrossRefGoogle Scholar
  31. 31.
    Kim SH, Davalos AR, Heo SJ, Rodier F, Zou Y, Beausejour C, Kaminker P, Yannone SM et al (2008) Telomere dysfunction and cell survival: roles for distinct TIN2-containing complexes. J Cell Biol 181(3):447–460. CrossRefGoogle Scholar
  32. 32.
    Kelleher C, Kurth I, Lingner J (2005) Human protection of telomeres 1 (POT1) is a negative regulator of telomerase activity in vitro. Mol Cell Biol 25(2):808–818. CrossRefGoogle Scholar
  33. 33.
    Verdun RE, Crabbe L, Haggblom C, Karlseder J (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20(4):551–561. CrossRefGoogle Scholar
  34. 34.
    Fang KM, Liu JJ, Li CC, Cheng CC, Hsieh YT, Chai KM, Lien YA, Tzeng SF (2015) Colchicine derivative as a potential anti-glioma compound. J Neuro-Oncol 124(3):403–412. CrossRefGoogle Scholar
  35. 35.
    Balmer D, Emery M, Andreux P, Auwerx J, Ginet V, Puyal J, Schorderet DF, Roduit R (2013) Autophagy defect is associated with low glucose-induced apoptosis in 661W photoreceptor cells. PLoS One 8(9):e74162. CrossRefGoogle Scholar
  36. 36.
    Gewirtz DA (2014) The four faces of autophagy: implications for cancer therapy. Cancer Res 74(3):647–651. CrossRefGoogle Scholar
  37. 37.
    Hung HH, Huang WP, Pan CY (2013) Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell Biol Toxicol 29(6):415–429. CrossRefGoogle Scholar
  38. 38.
    Whitwell J, Smith R, Jenner K, Lyon H, Wood D, Clements J, Aschcroft-Hawley K, Gollapudi B et al (2015) Relationships between p53 status, apoptosis and induction of micronuclei in different human and mouse cell lines in vitro: Implications for improving existing assays. Mutat Res Genet Toxicol Environ Mutagen 789-790:7–27. CrossRefGoogle Scholar
  39. 39.
    Xu F, Li X, Yan L, Yuan N, Fang Y, Cao Y, Xu L, Zhang X et al (2017) Autophagy promotes the repair of radiation-induced DNA damage in bone marrow hematopoietic cells via enhanced STAT3 signaling. Radiat Res 187(3):382–396. CrossRefGoogle Scholar
  40. 40.
    Zhou WJ, Deng R, Zhang XY, Feng GK, Gu LQ, Zhu XF (2009) G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol Cancer Ther 8(12):3203–3213. CrossRefGoogle Scholar
  41. 41.
    Zschocke J, Zimmermann N, Berning B, Ganal V, Holsboer F, Rein T (2011) Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons--dissociation from cholesterol homeostasis. Neuropsychopharmacology 36(8):1754–1768. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Animal Physiology and Reproduction, Faculty of BiotechnologyUniversity of RzeszowKolbuszowaPoland

Personalised recommendations