Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 6736–6755 | Cite as

Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions

  • Aubin Moutal
  • Katherine A. White
  • Aude Chefdeville
  • Rachel N. Laufmann
  • Peter F. Vitiello
  • Douglas Feinstein
  • Jill M. WeimerEmail author
  • Rajesh KhannaEmail author
Article

Abstract

Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2’s physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.

Keywords

CRMP2 Interactome Neurite outgrowth Post-translational modifications Human disease Alzheimer’s disease Multiple sclerosis Chronic pain Cancer Stroke Therapeutics Non-neuronal cells 

Notes

Funding

This work was supported by National Institutes of Health Awards (1R01NS098772, 1R01DA042852, and 1R01AT009716 to RK, R01NS082283 to JMW, and R01HL135112 to PFV), a Neurofibromatosis New Investigator Award from the Department of Defense Congressionally Directed Military Medical Research and Development Program (NF1000099 to RK), funding from the Synodos for NF1 program at the Children’s Tumor Foundation to JMW, and a research award from the Children’s Tumor Foundation (2015-04-009A) to RK and JMW. A.M. was supported by a Young Investigator’s Award from the Children’s Tumor Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang LH, Strittmatter SM (1996) A family of rat CRMP genes is differentially expressed in the nervous system. J Neurosci 16(19):6197–6207Google Scholar
  2. 2.
    Tan F, Thiele CJ, Li Z (2014) Collapsin response mediator proteins: Potential diagnostic and prognostic biomarkers in cancers (review). Oncol Lett 7(5):1333–1340.  https://doi.org/10.3892/ol.2014.1909 Google Scholar
  3. 3.
    Ip JP, Fu AK, Ip NY (2014) CRMP2: Functional roles in neural development and therapeutic potential in neurological diseases. Neuroscientist 20(6):589–598.  https://doi.org/10.1177/1073858413514278 Google Scholar
  4. 4.
    Makihara H, Nakai S, Ohkubo W, Yamashita N, Nakamura F, Kiyonari H, Shioi G, Jitsuki-Takahashi A et al (2016) CRMP1 and CRMP2 have synergistic but distinct roles in dendritic development. Genes Cells : devoted to molecular & cellular mechanisms 21(9):994–1005.  https://doi.org/10.1111/gtc.12399 Google Scholar
  5. 5.
    Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N et al (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591.  https://doi.org/10.1038/ncb825 Google Scholar
  6. 6.
    Yamashita N, Ohshima T, Nakamura F, Kolattukudy P, Honnorat J, Mikoshiba K, Goshima Y (2012) Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization. J Neurosci 32(4):1360–1365.  https://doi.org/10.1523/JNEUROSCI.5563-11.2012 Google Scholar
  7. 7.
    Crews L, Ruf R, Patrick C, Dumaop W, Trejo-Morales M, Achim CL, Rockenstein E, Masliah E (2011) Phosphorylation of collapsin response mediator protein-2 disrupts neuronal maturation in a model of adult neurogenesis: Implications for neurodegenerative disorders. Mol Neurodegener 6:67.  https://doi.org/10.1186/1750-1326-6-67 Google Scholar
  8. 8.
    Nagai J, Takaya R, Piao W, Goshima Y, Ohshima T (2016) Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury. Mol Cell Neurosci 74:42–48.  https://doi.org/10.1016/j.mcn.2016.03.006 Google Scholar
  9. 9.
    Yoshida H, Watanabe A, Ihara Y (1998) Collapsin response mediator protein-2 is associated with neurofibrillary tangles in Alzheimer’s disease. J Biol Chem 273(16):9761–9768Google Scholar
  10. 10.
    Moutal A, Cai S, Luo S, Voisin R, Khanna R (2018) CRMP2 is necessary for Neurofibromatosis type 1 related pain. Channels 12(1):47–50.  https://doi.org/10.1080/19336950.2017.1370524 Google Scholar
  11. 11.
    Moutal A, Yang X, Li W, Gilbraith KB, Luo S, Cai S, Francois-Moutal L, Chew LA et al (2017) CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide. Pain 158(12):2301–2319.  https://doi.org/10.1097/j.pain.0000000000001002 Google Scholar
  12. 12.
    Moutal A, Dustrude ET, Largent-Milnes TM, Vanderah TW, Khanna M, Khanna R (2017) Blocking CRMP2 SUMOylation reverses neuropathic pain. Mol Psychiatry 23(11):2119–2121.  https://doi.org/10.1038/mp.2017.117 Google Scholar
  13. 13.
    Moutal A, Luo S, Largent-Milnes TM, Vanderah TW, Khanna R (2018) Cdk5-mediated CRMP2 phosphorylation is necessary and sufficient for peripheral neuropathic pain. Neurobiol Pain doi: https://doi.org/10.1016/j.ynpai.2018.07.003
  14. 14.
    Charrier E, Reibel S, Rogemond V, Aguera M, Thomasset N, Honnorat J (2003) Collapsin response mediator proteins (CRMPs): Involvement in nervous system development and adult neurodegenerative disorders. Mol Neurobiol 28(1):51–64.  https://doi.org/10.1385/MN:28:1:51 Google Scholar
  15. 15.
    Benedict JW, Getty AL, Wishart TM, Gillingwater TH, Pearce DA (2009) Protein product of CLN6 gene responsible for variant late-onset infantile neuronal ceroid lipofuscinosis interacts with CRMP-2. J Neurosci Res 87(9):2157–2166.  https://doi.org/10.1002/jnr.22032 Google Scholar
  16. 16.
    Duplan L, Bernard N, Casseron W, Dudley K, Thouvenot E, Honnorat J, Rogemond V, De Bovis B et al (2010) Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death. J Neurosci 30(2):785–796.  https://doi.org/10.1523/JNEUROSCI.5411-09.2010 Google Scholar
  17. 17.
    Lim NK, Hung LW, Pang TY, McLean CA, Liddell JR, Hilton JB, Li QX, White AR et al (2014) Localized changes to glycogen synthase kinase-3 and collapsin response mediator protein-2 in the Huntington’s disease affected brain. Hum Mol Genet 23(15):4051–4063.  https://doi.org/10.1093/hmg/ddu119 Google Scholar
  18. 18.
    Togashi K, Hasegawa M, Nagai J, Tonouchi A, Masukawa D, Hensley K, Goshima Y, Ohshima T (2018) Genetic suppression of CRMP2 phosphorylation improves outcome in MPTP-induced Parkinson's model mice. Genes Cells : devoted to molecular & cellular mechanisms.  https://doi.org/10.1111/gtc.12651
  19. 19.
    Petratos S, Ozturk E, Azari MF, Kenny R, Lee JY, Magee KA, Harvey AR, McDonald C et al (2012) Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation. Brain J Neurol 135(Pt 6):1794–1818.  https://doi.org/10.1093/brain/aws100 Google Scholar
  20. 20.
    Tabares-Seisdedos R, Rubenstein JL (2009) Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: Implications for schizophrenia, autism and cancer. Mol Psychiatry 14(6):563–589.  https://doi.org/10.1038/mp.2009.2 Google Scholar
  21. 21.
    Pham X, Song G, Lao S, Goff L, Zhu H, Valle D, Avramopoulos D (2016) The DPYSL2 gene connects mTOR and schizophrenia. Transl Psychiatry 6(11):e933.  https://doi.org/10.1038/tp.2016.204 Google Scholar
  22. 22.
    Tobe BTD, Crain AM, Winquist AM, Calabrese B, Makihara H, Zhao WN, Lalonde J, Nakamura H et al (2017) Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci U S A 114(22):E4462–E4471.  https://doi.org/10.1073/pnas.1700111114 Google Scholar
  23. 23.
    Shimada K, Ishikawa T, Nakamura F, Shimizu D, Chishima T, Ichikawa Y, Sasaki T, Endo I et al (2014) Collapsin response mediator protein 2 is involved in regulating breast cancer progression. Breast Cancer 21(6):715–723.  https://doi.org/10.1007/s12282-013-0447-5 Google Scholar
  24. 24.
    Meyronet D, Massoma P, Thivolet F, Chalabreysse L, Rogemond V, Schlama A, Honnorat J, Thomasset N (2008) Extensive expression of collapsin response mediator protein 5 (CRMP5) is a specific marker of high-grade lung neuroendocrine carcinoma. Am J Surg Pathol 32(11):1699–1708.  https://doi.org/10.1097/PAS.0b013e31817dc37c Google Scholar
  25. 25.
    Shih JY, Yang SC, Hong TM, Yuan A, Chen JJ, Yu CJ, Chang YL, Lee YC et al (2001) Collapsin response mediator protein-1 and the invasion and metastasis of cancer cells. J Natl Cancer Inst 93(18):1392–1400Google Scholar
  26. 26.
    Gao X, Pang J, Li LY, Liu WP, Di JM, Sun QP, Fang YQ, Liu XP et al (2010) Expression profiling identifies new function of collapsin response mediator protein 4 as a metastasis-suppressor in prostate cancer. Oncogene 29(32):4555–4566.  https://doi.org/10.1038/onc.2010.213 Google Scholar
  27. 27.
    Moutal A, Villa LS, Yeon SK, Householder KT, Park KD, Sirianni RW, Khanna R (2018) CRMP2 phosphorylation drives glioblastoma cell proliferation. Mol Neurobiol 55(5):4403–4416.  https://doi.org/10.1007/s12035-017-0653-9 Google Scholar
  28. 28.
    Moutal A, Honnorat J, Massoma P, Desormeaux P, Bertrand C, Malleval C, Watrin C, Chounlamountri N et al (2015) CRMP5 controls glioblastoma cell proliferation and survival through notch-dependent signaling. Cancer Res 75(17):3519–3528.  https://doi.org/10.1158/0008-5472.CAN-14-0631 Google Scholar
  29. 29.
    Khanna R, Wilson SM, Brittain JM, Weimer J, Sultana R, Butterfield A, Hensley K (2012) Opening Pandora's jar: A primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders. Future Neurol 7(6):749–771.  https://doi.org/10.2217/fnl.12.68 Google Scholar
  30. 30.
    Brot S, Rogemond V, Perrot V, Chounlamountri N, Auger C, Honnorat J, Moradi-Ameli M (2010) CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci 30(32):10639–10654.  https://doi.org/10.1523/JNEUROSCI.0059-10.2010 Google Scholar
  31. 31.
    Quach TT, Wilson SM, Rogemond V, Chounlamountri N, Kolattukudy PE, Martinez S, Khanna M, Belin MF et al (2013) Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation. J Cell Sci 126(Pt 18):4262–4273.  https://doi.org/10.1242/jcs.131409 Google Scholar
  32. 32.
    Tan M, Cha C, Ye Y, Zhang J, Li S, Wu F, Gong S, Guo G (2015) CRMP4 and CRMP2 interact to coordinate cytoskeleton dynamics, regulating growth cone development and axon elongation. Neural Plast 2015:947423.  https://doi.org/10.1155/2015/947423 Google Scholar
  33. 33.
    Ponnusamy R, Lohkamp B (2013) Insights into the oligomerization of CRMPs: Crystal structure of human collapsin response mediator protein 5. J Neurochem 125(6):855–868.  https://doi.org/10.1111/jnc.12188 Google Scholar
  34. 34.
    Hedgecock EM, Culotti JG, Thomson JN, Perkins LA (1985) Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Dev Biol 111(1):158–170Google Scholar
  35. 35.
    Li W, Herman RK, Shaw JE (1992) Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics 132(3):675–689Google Scholar
  36. 36.
    Goshima Y, Nakamura F, Strittmatter P, Strittmatter SM (1995) Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33. Nature 376(6540):509–514.  https://doi.org/10.1038/376509a0 Google Scholar
  37. 37.
    Minturn JE, Fryer HJ, Geschwind DH, Hockfield S (1995) TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth. J Neurosci 15(10):6757–6766Google Scholar
  38. 38.
    Hamajima N, Matsuda K, Sakata S, Tamaki N, Sasaki M, Nonaka M (1996) A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution. Gene 180(1–2):157–163Google Scholar
  39. 39.
    Byk T, Dobransky T, Cifuentes-Diaz C, Sobel A (1996) Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product. J Neurosci 16(2):688–701Google Scholar
  40. 40.
    Yuasa-Kawada J, Suzuki R, Kano F, Ohkawara T, Murata M, Noda M (2003) Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization. Eur J Neurosci 17(11):2329–2343Google Scholar
  41. 41.
    Balastik M, Zhou XZ, Alberich-Jorda M, Weissova R, Ziak J, Pazyra-Murphy MF, Cosker KE, Machonova O et al (2015) Prolyl isomerase Pin1 regulates axon guidance by stabilizing CRMP2A selectively in distal axons. Cell Rep 13(4):812–828.  https://doi.org/10.1016/j.celrep.2015.09.026 Google Scholar
  42. 42.
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947.  https://doi.org/10.1523/JNEUROSCI.1860-14.2014 Google Scholar
  43. 43.
    Bretin S, Reibel S, Charrier E, Maus-Moatti M, Auvergnon N, Thevenoux A, Glowinski J, Rogemond V et al (2005) Differential expression of CRMP1, CRMP2A, CRMP2B, and CRMP5 in axons or dendrites of distinct neurons in the mouse brain. J Comp Neurol 486(1):1–17.  https://doi.org/10.1002/cne.20465 Google Scholar
  44. 44.
    Francois-Moutal L, Dustrude ET, Wang Y, Brustovetsky T, Dorame A, Ju W, Moutal A, Perez-Miller S et al (2018) Inhibition of the Ubc9 E2 SUMO-conjugating enzyme-CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain 159(10):2115–2127.  https://doi.org/10.1097/j.pain.0000000000001294 Google Scholar
  45. 45.
    Dustrude ET, Perez-Miller S, Francois-Moutal L, Moutal A, Khanna M, Khanna R (2017) A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function. Channels 11(4):316–328.  https://doi.org/10.1080/19336950.2017.1299838 Google Scholar
  46. 46.
    Dustrude ET, Moutal A, Yang X, Wang Y, Khanna M, Khanna R (2016) Hierarchical CRMP2 posttranslational modifications control NaV1.7 function. Proc Natl Acad Sci U S A 113(52):E8443–E8452.  https://doi.org/10.1073/pnas.1610531113 Google Scholar
  47. 47.
    Dustrude ET, Wilson SM, Ju W, Xiao Y, Khanna R (2013) CRMP2 protein SUMOylation modulates NaV1.7 channel trafficking. J Biol Chem 288(34):24316–24331.  https://doi.org/10.1074/jbc.M113.474924 Google Scholar
  48. 48.
    Myllykoski M, Baumann A, Hensley K, Kursula P (2017) Collapsin response mediator protein 2: High-resolution crystal structure sheds light on small-molecule binding, post-translational modifications, and conformational flexibility. Amino Acids 49(4):747–759.  https://doi.org/10.1007/s00726-016-2376-z Google Scholar
  49. 49.
    Lawal M, Olotu FA, Soliman MES (2018) Across the blood-brain barrier: Neurotherapeutic screening and characterization of naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools. Comput Biol Med 98:168–177.  https://doi.org/10.1016/j.compbiomed.2018.05.012 Google Scholar
  50. 50.
    Olguin-Albuerne M, Moran J (2018) Redox signaling mechanisms in nervous system development. Antioxid Redox Signal 28(18):1603–1625.  https://doi.org/10.1089/ars.2017.7284 Google Scholar
  51. 51.
    Chew LA, Khanna R (2018) CRMP2 and voltage-gated ion channels: Potential roles in neuropathic pain. Neuronal Signal 2(1).  https://doi.org/10.1042/NS20170220
  52. 52.
    Leney AC, El Atmioui D, Wu W, Ovaa H, Heck AJR (2017) Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Proc Natl Acad Sci U S A 114(35):E7255–E7261.  https://doi.org/10.1073/pnas.1620529114 Google Scholar
  53. 53.
    Cole RN, Hart GW (2001) Cytosolic O-glycosylation is abundant in nerve terminals. J Neurochem 79(5):1080–1089Google Scholar
  54. 54.
    Cnops L, Van de Plas B, Arckens L (2004) Age-dependent expression of collapsin response mediator proteins (CRMPs) in cat visual cortex. Eur J Neurosci 19(8):2345–2351.  https://doi.org/10.1111/j.0953-816X.2004.03330.x Google Scholar
  55. 55.
    Cnops L, Hu TT, Burnat K, Van der Gucht E, Arckens L (2006) Age-dependent alterations in CRMP2 and CRMP4 protein expression profiles in cat visual cortex. Brain Res 1088(1):109–119.  https://doi.org/10.1016/j.brainres.2006.03.028 Google Scholar
  56. 56.
    Ricard D, Stankoff B, Bagnard D, Aguera M, Rogemond V, Antoine JC, Spassky N, Zalc B et al (2000) Differential expression of collapsin response mediator proteins (CRMP/ULIP) in subsets of oligodendrocytes in the postnatal rodent brain. Mol Cell Neurosci 16(4):324–337.  https://doi.org/10.1006/mcne.2000.0888 Google Scholar
  57. 57.
    Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F, van der Zwan J, Haring M, Braun E et al (2018) Molecular architecture of the mouse nervous system. Cell 174(4):999–1014 e1022.  https://doi.org/10.1016/j.cell.2018.06.021 Google Scholar
  58. 58.
    Ricard D, Rogemond V, Charrier E, Aguera M, Bagnard D, Belin MF, Thomasset N, Honnorat J (2001) Isolation and expression pattern of human Unc-33-like phosphoprotein 6/collapsin response mediator protein 5 (Ulip6/CRMP5): Coexistence with Ulip2/CRMP2 in Sema3a- sensitive oligodendrocytes. J Neurosci 21(18):7203–7214Google Scholar
  59. 59.
    Fernandez-Gamba A, Leal MC, Maarouf CL, Richter-Landsberg C, Wu T, Morelli L, Roher AE, Castano EM (2012) Collapsin response mediator protein-2 phosphorylation promotes the reversible retraction of oligodendrocyte processes in response to non-lethal oxidative stress. J Neurochem 121(6):985–995.  https://doi.org/10.1111/j.1471-4159.2012.07742.x Google Scholar
  60. 60.
    Syed YA, Abdulla SA, Kotter MR (2017) Studying the effects of semaphorins on oligodendrocyte lineage cells. Methods Mol Biol 1493:363–378.  https://doi.org/10.1007/978-1-4939-6448-2_26 Google Scholar
  61. 61.
    Syed YA, Hand E, Mobius W, Zhao C, Hofer M, Nave KA, Kotter MR (2011) Inhibition of CNS remyelination by the presence of semaphorin 3A. J Neurosci 31(10):3719–3728.  https://doi.org/10.1523/jneurosci.4930-10.2011 Google Scholar
  62. 62.
    Piaton G, Aigrot MS, Williams A, Moyon S, Tepavcevic V, Moutkine I, Gras J, Matho KS et al (2011) Class 3 semaphorins influence oligodendrocyte precursor recruitment and remyelination in adult central nervous system. Brain J Neurol 134(Pt 4):1156–1167.  https://doi.org/10.1093/brain/awr022 Google Scholar
  63. 63.
    Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89(1):37–53.  https://doi.org/10.1016/j.neuron.2015.11.013 Google Scholar
  64. 64.
    Kamata T, Subleski M, Hara Y, Yuhki N, Kung H, Copeland NG, Jenkins NA, Yoshimura T et al (1998) Isolation and characterization of a bovine neural specific protein (CRMP-2) cDNA homologous to unc-33, a C. elegans gene implicated in axonal outgrowth and guidance. Brain Res Mol Brain Res 54(2):219–236Google Scholar
  65. 65.
    Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, Mulinyawe SB, Bohlen CJ et al (2016) New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 113(12):E1738–E1746.  https://doi.org/10.1073/pnas.1525528113 Google Scholar
  66. 66.
    Hirbec H, Marmai C, Duroux-Richard I, Roubert C, Esclangon A, Croze S, Lachuer J, Peyroutou R et al (2018) The microglial reaction signature revealed by RNAseq from individual mice. Glia 66(5):971–986.  https://doi.org/10.1002/glia.23295 Google Scholar
  67. 67.
    Hensley K, Christov A, Kamat S, Zhang XC, Jackson KW, Snow S, Post J (2010) Proteomic identification of binding partners for the brain metabolite lanthionine ketimine (LK) and documentation of LK effects on microglia and motoneuron cell cultures. J Neurosci 30(8):2979–2988.  https://doi.org/10.1523/JNEUROSCI.5247-09.2010 Google Scholar
  68. 68.
    Kotaka K, Nagai J, Hensley K, Ohshima T (2017) Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochem Biophys Res Commun 483(1):759–764.  https://doi.org/10.1016/j.bbrc.2016.12.069 Google Scholar
  69. 69.
    Hensley K, Gabbita SP, Venkova K, Hristov A, Johnson MF, Eslami P, Harris-White ME (2013) A derivative of the brain metabolite lanthionine ketimine improves cognition and diminishes pathology in the 3 x Tg-AD mouse model of Alzheimer disease. J Neuropathol Exp Neurol 72(10):955–969.  https://doi.org/10.1097/NEN.0b013e3182a74372 Google Scholar
  70. 70.
    Zhou LS, Zhao GL, Liu Q, Jiang SC, Wang Y, Zhang DM (2015) Silencing collapsin response mediator protein-2 reprograms macrophage phenotype and improves infarct healing in experimental myocardial infarction model. J Inflamm (London, England) 12:11.  https://doi.org/10.1186/s12950-015-0053-8 Google Scholar
  71. 71.
    Bradke F, Dotti CG (2000) Establishment of neuronal polarity: Lessons from cultured hippocampal neurons. Curr Opin Neurobiol 10(5):574–581Google Scholar
  72. 72.
    Inagaki N, Chihara K, Arimura N, Menager C, Kawano Y, Matsuo N, Nishimura T, Amano M et al (2001) CRMP-2 induces axons in cultured hippocampal neurons. Nat Neurosci 4(8):781–782.  https://doi.org/10.1038/90476 Google Scholar
  73. 73.
    Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120(1):137–149.  https://doi.org/10.1016/j.cell.2004.11.012 Google Scholar
  74. 74.
    Wang LH, Strittmatter SM (1997) Brain CRMP forms heterotetramers similar to liver dihydropyrimidinase. J Neurochem 69(6):2261–2269Google Scholar
  75. 75.
    Niwa S, Nakamura F, Tomabechi Y, Aoki M, Shigematsu H, Matsumoto T, Yamagata A, Fukai S et al (2017) Structural basis for CRMP2-induced axonal microtubule formation. Sci Rep 7(1):10681.  https://doi.org/10.1038/s41598-017-11031-4 Google Scholar
  76. 76.
    Kimura T, Watanabe H, Iwamatsu A, Kaibuchi K (2005) Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 93(6):1371–1382.  https://doi.org/10.1111/j.1471-4159.2005.03063.x Google Scholar
  77. 77.
    Muller-Reichert T, Chretien D, Severin F, Hyman AA (1998) Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Proc Natl Acad Sci U S A 95(7):3661–3666Google Scholar
  78. 78.
    Chae YC, Lee S, Heo K, Ha SH, Jung Y, Kim JH, Ihara Y, Suh PG et al (2009) Collapsin response mediator protein-2 regulates neurite formation by modulating tubulin GTPase activity. Cell Signal 21(12):1818–1826.  https://doi.org/10.1016/j.cellsig.2009.07.017 Google Scholar
  79. 79.
    Wilson SM, Khanna R (2015) Specific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: Implications for the therapeutic potential of lacosamide. Mol Neurobiol 51(2):599–609.  https://doi.org/10.1007/s12035-014-8775-9 Google Scholar
  80. 80.
    Wilson SM, Moutal A, Melemedjian OK, Wang Y, Ju W, Francois-Moutal L, Khanna M, Khanna R (2014) The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth. Front Cell Neurosci 8:196.  https://doi.org/10.3389/fncel.2014.00196 Google Scholar
  81. 81.
    Wang Y, Brittain JM, Jarecki BW, Park KD, Wilson SM, Wang B, Hale R, Meroueh SO et al (2010) In silico docking and electrophysiological characterization of lacosamide binding sites on collapsin response mediator protein-2 identifies a pocket important in modulating sodium channel slow inactivation. J Biol Chem 285(33):25296–25307.  https://doi.org/10.1074/jbc.M110.128801 Google Scholar
  82. 82.
    Sumi T, Imasaki T, Aoki M, Sakai N, Nitta E, Shirouzu M, Nitta R (2018) Structural insights into the altering function of CRMP2 by phosphorylation. Cell Struct Funct 43(1):15–23.  https://doi.org/10.1247/csf.17025 Google Scholar
  83. 83.
    Uchida Y, Ohshima T, Yamashita N, Ogawara M, Sasaki Y, Nakamura F, Goshima Y (2009) Semaphorin3A signaling mediated by Fyn-dependent tyrosine phosphorylation of collapsin response mediator protein 2 at tyrosine 32. J Biol Chem 284(40):27393–27401.  https://doi.org/10.1074/jbc.M109.000240 Google Scholar
  84. 84.
    Sasaki Y, Cheng C, Uchida Y, Nakajima O, Ohshima T, Yagi T, Taniguchi M, Nakayama T et al (2002) Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35(5):907–920Google Scholar
  85. 85.
    Varrin-Doyer M, Vincent P, Cavagna S, Auvergnon N, Noraz N, Rogemond V, Honnorat J, Moradi-Ameli M et al (2009) Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration. J Biol Chem 284(19):13265–13276.  https://doi.org/10.1074/jbc.M807664200 Google Scholar
  86. 86.
    Giraudon P, Nicolle A, Cavagna S, Benetollo C, Marignier R, Varrin-Doyer M (2013) Insight into the role of CRMP2 (collapsin response mediator protein 2) in T lymphocyte migration: The particular context of virus infection. Cell Adhes Migr 7(1):38–43.  https://doi.org/10.4161/cam.22385 Google Scholar
  87. 87.
    Zheng Y, Sethi R, Mangala LS, Taylor C, Goldsmith J, Wang M, Masuda K, Karaminejadranjbar M et al (2018) Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation. Nat Commun 9(1):476.  https://doi.org/10.1038/s41467-017-02811-7 Google Scholar
  88. 88.
    Moutal A, Chew LA, Yang X, Wang Y, Yeon SK, Telemi E, Meroueh S, Park KD et al (2016) (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology. Pain 157(7):1448–1463.  https://doi.org/10.1097/j.pain.0000000000000555 Google Scholar
  89. 89.
    Moutal A, Francois-Moutal L, Perez-Miller S, Cottier K, Chew LA, Yeon SK, Dai J, Park KD et al (2016) (S)-Lacosamide binding to collapsin response mediator protein 2 (CRMP2) regulates CaV2.2 activity by subverting its phosphorylation by Cdk5. Mol Neurobiol 53(3):1959–1976.  https://doi.org/10.1007/s12035-015-9141-2 Google Scholar
  90. 90.
    Sarhan AR, Szyroka J, Begum S, Tomlinson MG, Hotchin NA, Heath JK, Cunningham DL (2017) Quantitative phosphoproteomics reveals a role for collapsin response mediator protein 2 in PDGF-induced cell migration. Sci Rep 7(1):3970.  https://doi.org/10.1038/s41598-017-04015-x Google Scholar
  91. 91.
    Yang Z, Kuboyama T, Tohda C (2017) A systematic strategy for discovering a therapeutic drug for Alzheimer’s disease and its target molecule. Front Pharmacol 8:340.  https://doi.org/10.3389/fphar.2017.00340 Google Scholar
  92. 92.
    Abe H, Jitsuki S, Nakajima W, Murata Y, Jitsuki-Takahashi A, Katsuno Y, Tada H, Sano A et al (2018) CRMP2-binding compound, edonerpic maleate, accelerates motor function recovery from brain damage. Science 360(6384):50–57.  https://doi.org/10.1126/science.aao2300 Google Scholar
  93. 93.
    Williamson R, van Aalten L, Mann DM, Platt B, Plattner F, Bedford L, Mayer J, Howlett D et al (2011) CRMP2 hyperphosphorylation is characteristic of Alzheimer’s disease and not a feature common to other neurodegenerative diseases. J Alzheimer's Dis : JAD 27(3):615–625.  https://doi.org/10.3233/JAD-2011-110617 Google Scholar
  94. 94.
    Cole AR, Noble W, van Aalten L, Plattner F, Meimaridou R, Hogan D, Taylor M, LaFrancois J et al (2007) Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer’s disease progression. J Neurochem 103(3):1132–1144.  https://doi.org/10.1111/j.1471-4159.2007.04829.x Google Scholar
  95. 95.
    Isono T, Yamashita N, Obara M, Araki T, Nakamura F, Kamiya Y, Alkam T, Nitta A et al (2013) Amyloid-beta(2)(5)(-)(3)(5) induces impairment of cognitive function and long-term potentiation through phosphorylation of collapsin response mediator protein 2. Neurosci Res 77(3):180–185.  https://doi.org/10.1016/j.neures.2013.08.005 Google Scholar
  96. 96.
    Xing H, Lim YA, Chong JR, Lee JH, Aarsland D, Ballard CG, Francis PT, Chen CP et al (2016) Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with beta-amyloid burden and synaptic deficits in Lewy body dementias. Molecular Brain 9(1):84.  https://doi.org/10.1186/s13041-016-0264-9 Google Scholar
  97. 97.
    Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M et al (2008) Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 283(14):9399–9413.  https://doi.org/10.1074/jbc.M708206200 Google Scholar
  98. 98.
    Moutal A, Dustrude ET, Khanna R (2017) Sensitization of ion channels contributes to central and peripheral dysfunction in neurofibromatosis type 1. Mol Neurobiol 54(5):3342–3349.  https://doi.org/10.1007/s12035-016-9907-1 Google Scholar
  99. 99.
    Moutal A, Sun L, Yang X, Li W, Cai S, Luo S, Khanna R (2018) CRMP2-neurofibromin interface drives NF1-related pain. Neuroscience 381:79–90.  https://doi.org/10.1016/j.neuroscience.2018.04.002 Google Scholar
  100. 100.
    Grant NJ, Coates PJ, Woods YL, Bray SE, Morrice NA, Hastie CJ, Lamont DJ, Carey FA et al (2015) Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis. BMC Cancer 15:885.  https://doi.org/10.1186/s12885-015-1691-1 Google Scholar
  101. 101.
    Couderc C, Bollard J, Coute Y, Massoma P, Poncet G, Lepinasse F, Hervieu V, Gadot N et al (2015) Mechanisms of local invasion in enteroendocrine tumors: Identification of novel candidate cytoskeleton-associated proteins in an experimental mouse model by a proteomic approach and validation in human tumors. Mol Cell Endocrinol 399:154–163.  https://doi.org/10.1016/j.mce.2014.09.006 Google Scholar
  102. 102.
    Tahimic CG, Tomimatsu N, Nishigaki R, Fukuhara A, Toda T, Kaibuchi K, Shiota G, Oshimura M et al (2006) Evidence for a role of Collapsin response mediator protein-2 in signaling pathways that regulate the proliferation of non-neuronal cells. Biochem Biophys Res Commun 340(4):1244–1250.  https://doi.org/10.1016/j.bbrc.2005.12.132 Google Scholar
  103. 103.
    Marques JM, Rodrigues RJ, Valbuena S, Rozas JL, Selak S, Marin P, Aller MI, Lerma J (2013) CRMP2 tethers kainate receptor activity to cytoskeleton dynamics during neuronal maturation. J Neurosci 33(46):18298–18310.  https://doi.org/10.1523/JNEUROSCI.3136-13.2013 Google Scholar
  104. 104.
    Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M, Iwamatsu A, Goshima Y et al (2000) Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem 275(31):23973–23980.  https://doi.org/10.1074/jbc.M001032200 Google Scholar
  105. 105.
    Quarta S, Camprubi-Robles M, Schweigreiter R, Matusica D, Haberberger RV, Proia RL, Bandtlow CE, Ferrer-Montiel A et al (2017) Sphingosine-1-phosphate and the S1P3 receptor initiate neuronal retraction via RhoA/ROCK associated with CRMP2 phosphorylation. Front Mol Neurosci 10:317.  https://doi.org/10.3389/fnmol.2017.00317 Google Scholar
  106. 106.
    Arimura N, Menager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M et al (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol Cell Biol 25(22):9973–9984.  https://doi.org/10.1128/MCB.25.22.9973-9984.2005 Google Scholar
  107. 107.
    Ju W, Li Q, Wilson SM, Brittain JM, Meroueh L, Khanna R (2013) SUMOylation alters CRMP2 regulation of calcium influx in sensory neurons. Channels 7(3):153–159.  https://doi.org/10.4161/chan.24224 Google Scholar
  108. 108.
    Francois-Moutal L, Scott DD, Perez-Miller S, Gokhale V, Khanna M, Khanna R (2018) Chemical shift perturbation mapping of the Ubc9-CRMP2 interface identifies a pocket in CRMP2 amenable for allosteric modulation of Nav1.7 channels. Channels (Austin) 12(1):219–227.  https://doi.org/10.1080/19336950.2018.1491244 Google Scholar
  109. 109.
    Pace PE, Peskin AV, Konigstorfer A, Jasoni CJ, Winterbourn CC, Hampton MB (2018) Peroxiredoxin interaction with the cytoskeletal-regulatory protein CRMP2: Investigation of a putative redox relay. Free Radic Biol Med 129:383–393.  https://doi.org/10.1016/j.freeradbiomed.2018.10.407 Google Scholar
  110. 110.
    Morinaka A, Yamada M, Itofusa R, Funato Y, Yoshimura Y, Nakamura F, Yoshimura T, Kaibuchi K et al (2011) Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci Signal 4(170):ra26.  https://doi.org/10.1126/scisignal.2001127 Google Scholar
  111. 111.
    Gellert M, Venz S, Mitlohner J, Cott C, Hanschmann EM, Lillig CH (2013) Identification of a dithiol-disulfide switch in collapsin response mediator protein 2 (CRMP2) that is toggled in a model of neuronal differentiation. J Biol Chem 288(49):35117–35125.  https://doi.org/10.1074/jbc.M113.521443 Google Scholar
  112. 112.
    Hu S, Zhu L (2018) Semaphorins and their receptors: From axonal guidance to atherosclerosis. Front Physiol 9:1236.  https://doi.org/10.3389/fphys.2018.01236 Google Scholar
  113. 113.
    Ito Y, Oinuma I, Katoh H, Kaibuchi K, Negishi M (2006) Sema4D/plexin-B1 activates GSK-3beta through R-Ras GAP activity, inducing growth cone collapse. EMBO Rep 7(7):704–709.  https://doi.org/10.1038/sj.embor.7400737 Google Scholar
  114. 114.
    Arbeille E, Reynaud F, Sanyas I, Bozon M, Kindbeiter K, Causeret F, Pierani A, Falk J et al (2015) Cerebrospinal fluid-derived Semaphorin3B orients neuroepithelial cell divisions in the apicobasal axis. Nat Commun 6:6366.  https://doi.org/10.1038/ncomms7366 Google Scholar
  115. 115.
    Uchida Y, Ohshima T, Sasaki Y, Suzuki H, Yanai S, Yamashita N, Nakamura F, Takei K et al (2005) Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3beta phosphorylation of CRMP2: Implication of common phosphorylating mechanism underlying axon guidance and Alzheimer's disease. Genes Cells : devoted to molecular & cellular mechanisms 10(2):165–179.  https://doi.org/10.1111/j.1365-2443.2005.00827.x Google Scholar
  116. 116.
    Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernandez F, Eickholt BJ et al (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J Biol Chem 281(24):16591–16598.  https://doi.org/10.1074/jbc.M513344200 Google Scholar
  117. 117.
    Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T et al (2004) Alpha2-chimaerin, cyclin-dependent kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J Neurosci 24(41):8994–9004.  https://doi.org/10.1523/JNEUROSCI.3184-04.2004 Google Scholar
  118. 118.
    Shapovalova Z, Tabunshchyk K, Greer PA (2007) The Fer tyrosine kinase regulates an axon retraction response to Semaphorin 3A in dorsal root ganglion neurons. BMC Dev Biol 7:133.  https://doi.org/10.1186/1471-213X-7-133 Google Scholar
  119. 119.
    Cole AR, Knebel A, Morrice NA, Robertson LA, Irving AJ, Connolly CN, Sutherland C (2004) GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 279(48):50176–50180.  https://doi.org/10.1074/jbc.C400412200 Google Scholar
  120. 120.
    Morimura R, Nozawa K, Tanaka H, Ohshima T (2013) Phosphorylation of Dpsyl2 (CRMP2) and Dpsyl3 (CRMP4) is required for positioning of caudal primary motor neurons in the zebrafish spinal cord. Dev Neurobiol 73(12):911–920.  https://doi.org/10.1002/dneu.22117 Google Scholar
  121. 121.
    Niisato E, Nagai J, Yamashita N, Nakamura F, Goshima Y, Ohshima T (2013) Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons. Dev Neurobiol 73(2):142–151.  https://doi.org/10.1002/dneu.22048 Google Scholar
  122. 122.
    Gu Y, Ihara Y (2000) Evidence that collapsin response mediator protein-2 is involved in the dynamics of microtubules. J Biol Chem 275(24):17917–17920.  https://doi.org/10.1074/jbc.C000179200 Google Scholar
  123. 123.
    Lin PC, Chan PM, Hall C, Manser E (2011) Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction. J Biol Chem 286(48):41466–41478.  https://doi.org/10.1074/jbc.M111.283580 Google Scholar
  124. 124.
    Jauffred B, Llense F, Sommer B, Wang Z, Martin C, Bellaiche Y (2013) Regulation of centrosome movements by numb and the collapsin response mediator protein during Drosophila sensory progenitor asymmetric division. Development 140(13):2657–2668.  https://doi.org/10.1242/dev.087338 Google Scholar
  125. 125.
    Nishimura T, Fukata Y, Kato K, Yamaguchi T, Matsuura Y, Kamiguchi H, Kaibuchi K (2003) CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth. Nat Cell Biol 5(9):819–826.  https://doi.org/10.1038/ncb1039 Google Scholar
  126. 126.
    Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG, Tacchetti C, Di Fiore PP (2000) Numb is an endocytic protein. J Cell Biol 151(6):1345–1352Google Scholar
  127. 127.
    Quach TT, Duchemin AM, Rogemond V, Aguera M, Honnorat J, Belin MF, Kolattukudy PE (2004) Involvement of collapsin response mediator proteins in the neurite extension induced by neurotrophins in dorsal root ganglion neurons. Mol Cell Neurosci 25(3):433–443.  https://doi.org/10.1016/j.mcn.2003.11.006 Google Scholar
  128. 128.
    Fang WQ, Ip JP, Li R, Ng YP, Lin SC, Chen Y, Fu AK, Ip NY (2011) Cdk5-mediated phosphorylation of Axin directs axon formation during cerebral cortex development. J Neurosci 31(38):13613–13624.  https://doi.org/10.1523/JNEUROSCI.3120-11.2011 Google Scholar
  129. 129.
    Chadborn NH, Ahmed AI, Holt MR, Prinjha R, Dunn GA, Jones GE, Eickholt BJ (2006) PTEN couples Sema3A signalling to growth cone collapse. J Cell Sci 119(Pt 5):951–957.  https://doi.org/10.1242/jcs.02801 Google Scholar
  130. 130.
    Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: Critical roles of GSK-3beta and its upstream regulators. Cell 120(1):123–135.  https://doi.org/10.1016/j.cell.2004.12.033 Google Scholar
  131. 131.
    Arimura N, Hattori A, Kimura T, Nakamuta S, Funahashi Y, Hirotsune S, Furuta K, Urano T et al (2009) CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity. J Neurochem 111(2):380–390.  https://doi.org/10.1111/j.1471-4159.2009.06317.x Google Scholar
  132. 132.
    Kawano Y, Yoshimura T, Tsuboi D, Kawabata S, Kaneko-Kawano T, Shirataki H, Takenawa T, Kaibuchi K (2005) CRMP-2 is involved in kinesin-1-dependent transport of the Sra-1/WAVE1 complex and axon formation. Mol Cell Biol 25(22):9920–9935.  https://doi.org/10.1128/MCB.25.22.9920-9935.2005 Google Scholar
  133. 133.
    Rahajeng J, Giridharan SS, Naslavsky N, Caplan S (2010) Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 285(42):31918–31922.  https://doi.org/10.1074/jbc.C110.166066 Google Scholar
  134. 134.
    Booze ML, Hansen JM, Vitiello PF (2016) A novel mouse model for the identification of thioredoxin-1 protein interactions. Free Radic Biol Med 99:533–543.  https://doi.org/10.1016/j.freeradbiomed.2016.09.013 Google Scholar
  135. 135.
    Wilson C, Gonzalez-Billault C (2015) Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: Implications for neuronal development and trafficking. Front Cell Neurosci 9:381.  https://doi.org/10.3389/fncel.2015.00381 Google Scholar
  136. 136.
    Xu X, Wicki-Stordeur LE, Sanchez-Arias JC, Liu M, Weaver MS, Choi CSW, Swayne LA (2018) Probenecid disrupts a novel pannexin 1-collapsin response mediator protein 2 interaction and increases microtubule stability. Front Cell Neurosci 12:124.  https://doi.org/10.3389/fncel.2018.00124 Google Scholar
  137. 137.
    Saitoh F, Hagiwara H, Wakatsuki S, Araki T (2018) Carboxymethylation of CRMP2 is associated with decreased Schwann cell myelination efficiency. Neurosci Res 139:58–62.  https://doi.org/10.1016/j.neures.2018.08.015 Google Scholar
  138. 138.
    Dai X, Sun Z, Liang R, Li Y, Luo H, Huang Y, Chen M, Su Z et al (2015) Recombinant Nogo-66 via soluble expression with SUMO fusion in Escherichia coli inhibits neurite outgrowth in vitro. Appl Microbiol Biotechnol 99(14):5997–6007.  https://doi.org/10.1007/s00253-015-6477-5 Google Scholar
  139. 139.
    Khidekel N, Ficarro SB, Clark PM, Bryan MC, Swaney DL, Rexach JE, Sun YE, Coon JJ et al (2007) Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat Chem Biol 3(6):339–348.  https://doi.org/10.1038/nchembio881 Google Scholar
  140. 140.
    Zhang JN, Koch JC (2017) Collapsin response mediator protein-2 plays a major protective role in acute axonal degeneration. Neural Regen Res 12(5):692–695.  https://doi.org/10.4103/1673-5374.206631 Google Scholar
  141. 141.
    Hensley K, Kursula P (2016) Collapsin response mediator protein-2 (CRMP2) is a plausible etiological factor and potential therapeutic target in Alzheimer’s disease: Comparison and contrast with microtubule-associated protein tau. J Alzheimers Dis 53(1):1–14.  https://doi.org/10.3233/JAD-160076 Google Scholar
  142. 142.
    Shah K, Lahiri DK (2017) A tale of the good and bad: Remodeling of the microtubule network in the brain by Cdk5. Mol Neurobiol 54(3):2255–2268.  https://doi.org/10.1007/s12035-016-9792-7 Google Scholar
  143. 143.
    Hensley K, Venkova K, Christov A, Gunning W, Park J (2011) Collapsin response mediator protein-2: An emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 43(3):180–191.  https://doi.org/10.1007/s12035-011-8166-4 Google Scholar
  144. 144.
    Quach TT, Honnorat J, Kolattukudy PE, Khanna R, Duchemin AM (2015) CRMPs: Critical molecules for neurite morphogenesis and neuropsychiatric diseases. Mol Psychiatry 20(9):1037–1045.  https://doi.org/10.1038/mp.2015.77 Google Scholar
  145. 145.
    Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T (2016) Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer’s disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res 94(1):15–26.  https://doi.org/10.1002/jnr.23674 Google Scholar
  146. 146.
    Wang Y, Yin H, Li J, Zhang Y, Han B, Zeng Z, Qiao N, Cui X et al (2013) Amelioration of beta-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neurosci Lett 557(Pt B):112–117.  https://doi.org/10.1016/j.neulet.2013.10.024 Google Scholar
  147. 147.
    Castillo C, Martinez JC, Longart M, Garcia L, Hernandez M, Carballo J, Rojas H, Matteo L et al (2018) Extracellular application of CRMP2 increases cytoplasmic calcium through NMDA receptors. Neuroscience 376:204–223.  https://doi.org/10.1016/j.neuroscience.2018.02.002 Google Scholar
  148. 148.
    Moutal A, Khanna R (2018) Unconventional signaling by extracellular CRMP2: Possible role as an atypical neurotransmitter? Neuroscience 376:224–226.  https://doi.org/10.1016/j.neuroscience.2018.02.025 Google Scholar
  149. 149.
    Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Alavi Naini SM, Mandelkow EM, Mandelkow E et al (2017) What is the evidence that tau pathology spreads through prion-like propagation? Acta Neuropathol Commun 5(1):99.  https://doi.org/10.1186/s40478-017-0488-7 Google Scholar
  150. 150.
    Numata-Uematsu Y, Wakatsuki S, Nagano S, Shibata M, Sakai K, Ichinohe N, Mikoshiba K, Ohshima T et al (2018) Inhibition of collapsin response mediator protein-2 phosphorylation ameliorates motor phenotype of ALS model mice expressing SOD1G93A. Neurosci Res 139:63–68.  https://doi.org/10.1016/j.neures.2018.08.016 Google Scholar
  151. 151.
    Chung MA, Lee JE, Lee JY, Ko MJ, Lee ST, Kim HJ (2005) Alteration of collapsin response mediator protein-2 expression in focal ischemic rat brain. Neuroreport 16(15):1647–1653Google Scholar
  152. 152.
    Liu W, Zhou XW, Liu S, Hu K, Wang C, He Q, Li M (2009) Calpain-truncated CRMP-3 and -4 contribute to potassium deprivation-induced apoptosis of cerebellar granule neurons. Proteomics 9(14):3712–3728.  https://doi.org/10.1002/pmic.200800979 Google Scholar
  153. 153.
    Bretin S, Rogemond V, Marin P, Maus M, Torrens Y, Honnorat J, Glowinski J, Premont J et al (2006) Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit. J Neurochem 98(4):1252–1265.  https://doi.org/10.1111/j.1471-4159.2006.03969.x Google Scholar
  154. 154.
    Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27(31):8334–8343.  https://doi.org/10.1523/JNEUROSCI.2155-07.2007 Google Scholar
  155. 155.
    Brittain JM, Pan R, You H, Brustovetsky T, Brustovetsky N, Zamponi GW, Lee WH, Khanna R (2012) Disruption of NMDAR-CRMP-2 signaling protects against focal cerebral ischemic damage in the rat middle cerebral artery occlusion model. Channels (Austin) 6(1):52–59Google Scholar
  156. 156.
    Brustovetsky T, Pellman JJ, Yang XF, Khanna R, Brustovetsky N (2014) Collapsin response mediator protein 2 (CRMP2) interacts with N-methyl-D-aspartate (NMDA) receptor and Na+/Ca2+ exchanger and regulates their functional activity. J Biol Chem 289(11):7470–7482.  https://doi.org/10.1074/jbc.M113.518472 Google Scholar
  157. 157.
    Brittain JM, Chen L, Wilson SM, Brustovetsky T, Gao X, Ashpole NM, Molosh AI, You H et al (2011) Neuroprotection against traumatic brain injury by a peptide derived from the collapsin response mediator protein 2 (CRMP2). J Biol Chem 286(43):37778–37792.  https://doi.org/10.1074/jbc.M111.255455 Google Scholar
  158. 158.
    Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, Chen Z, Zhang C et al (2016) Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun 7:11773.  https://doi.org/10.1038/ncomms11773 Google Scholar
  159. 159.
    Boudreau AC, Ferrario CR, Glucksman MJ, Wolf ME (2009) Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine. J Neurochem 110(1):363–377.  https://doi.org/10.1111/j.1471-4159.2009.06140.x Google Scholar
  160. 160.
    Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901.  https://doi.org/10.1016/j.neuron.2008.09.005 Google Scholar
  161. 161.
    Khanna R, Zougman A, Stanley EF (2007) A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners. J Biochem Mol Biol 40(3):302–314Google Scholar
  162. 162.
    Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R (2009) An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem 284(45):31375–31390.  https://doi.org/10.1074/jbc.M109.009951 Google Scholar
  163. 163.
    Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science 285(5433):1569–1572Google Scholar
  164. 164.
    Wilson SM, Brittain JM, Piekarz AD, Ballard CJ, Ripsch MS, Cummins TR, Hurley JH, Khanna M et al (2011) Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel-CRMP-2 signaling complex. Channels (Austin) 5(5):449–456.  https://doi.org/10.4161/chan.5.5.17363 Google Scholar
  165. 165.
    Chi XX, Schmutzler BS, Brittain JM, Hingtgen CM, Nicol GD, Khanna R (2009) Regulation of N-type voltage-gated calcium (CaV2.2) channels and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons. J Cell Sci 23:4351–4362Google Scholar
  166. 166.
    Brittain JM, Wang Y, Eruvwetere O, Khanna R (2012) Cdk5-mediated phosphorylation of CRMP-2 enhances its interaction with CaV2.2. FEBS Lett 586(21):3813–3818.  https://doi.org/10.1016/j.febslet.2012.09.022 Google Scholar
  167. 167.
    Sheets PL, Heers C, Stoehr T, Cummins TR (2008) Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther 326(1):89–99.  https://doi.org/10.1124/jpet.107.133413 Google Scholar
  168. 168.
    Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q, Lolignier S, Morohashi T, Gossage SJ et al (2018) Mapping protein interactions of sodium channel NaV1.7 using epitope-tagged gene-targeted mice. EMBO J 37(3):427–445.  https://doi.org/10.15252/embj.201796692 Google Scholar
  169. 169.
    Laedermann CJ, Decosterd I, Abriel H (2014) Ubiquitylation of voltage-gated sodium channels. Handb Exp Pharmacol 221:231–250.  https://doi.org/10.1007/978-3-642-41588-3_11 Google Scholar
  170. 170.
    Creange A, Zeller J, Rostaing-Rigattieri S, Brugieres P, Degos JD, Revuz J, Wolkenstein P (1999) Neurological complications of neurofibromatosis type 1 in adulthood. Brain J Neurol 122(Pt 3):473–481Google Scholar
  171. 171.
    Ferner RE, Thomas M, Mercer G, Williams V, Leschziner GD, Afridi SK, Golding JF (2017) Evaluation of quality of life in adults with neurofibromatosis 1 (NF1) using the Impact of NF1 on Quality Of Life (INF1-QOL) questionnaire. Health Qual Life Outcomes 15(1):34.  https://doi.org/10.1186/s12955-017-0607-y Google Scholar
  172. 172.
    White KA, Swier VJ, Cain JT, Kohlmeyer JL, Meyerholz DK, Tanas MR, Uthoff J, Hammond E et al (2018) A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI Insight 3(12).  https://doi.org/10.1172/jci.insight.120402
  173. 173.
    Moutal A, Wang Y, Yang X, Ji Y, Luo S, Dorame A, Bellampalli SS, Chew LA et al (2017) Dissecting the role of the CRMP2-neurofibromin complex on pain behaviors. Pain 158(11):2203–2221.  https://doi.org/10.1097/j.pain.0000000000001026 Google Scholar
  174. 174.
    Nagai J, Owada K, Kitamura Y, Goshima Y, Ohshima T (2016) Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Exp Neurol 277:283–295.  https://doi.org/10.1016/j.expneurol.2016.01.015 Google Scholar
  175. 175.
    Siddall PJ, McClelland JM, Rutkowski SB, Cousins MJ (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain 103(3):249–257Google Scholar
  176. 176.
    Hergenroeder GW, Redell JB, Choi HA, Schmitt L, Donovan W, Francisco GE, Schmitt K, Moore AN et al (2018) Increased levels of circulating glial fibrillary acidic protein and collapsin response mediator protein-2 autoantibodies in the acute stage of spinal cord injury predict the subsequent development of neuropathic pain. J Neurotrauma 35(21):2530–2539.  https://doi.org/10.1089/neu.2018.5675 Google Scholar
  177. 177.
    Adamus G, Bonnah R, Brown L, David L (2013) Detection of autoantibodies against heat shock proteins and collapsin response mediator proteins in autoimmune retinopathy. BMC Ophthalmol 13:48.  https://doi.org/10.1186/1471-2415-13-48 Google Scholar
  178. 178.
    Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, Hertz-Picciotto I, Pessah IN et al (2013) Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry 3:e277.  https://doi.org/10.1038/tp.2013.50 Google Scholar
  179. 179.
    Lubec G, Nonaka M, Krapfenbauer K, Gratzer M, Cairns N, Fountoulakis M (1999) Expression of the dihydropyrimidinase related protein 2 (DRP-2) in Down syndrome and Alzheimer's disease brain is downregulated at the mRNA and dysregulated at the protein level. J Neural Transm Suppl 57:161–177Google Scholar
  180. 180.
    Khawaja X, Xu J, Liang JJ, Barrett JE (2004) Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies. J Neurosci Res 75(4):451–460.  https://doi.org/10.1002/jnr.10869 Google Scholar
  181. 181.
    Ozgen HM, Staal WG, Barber JC, de Jonge MV, Eleveld MJ, Beemer FA, Hochstenbach R, Poot M (2009) A novel 6.14 Mb duplication of chromosome 8p21 in a patient with autism and self mutilation. J Autism Dev Disord 39(2):322–329.  https://doi.org/10.1007/s10803-008-0627-x Google Scholar
  182. 182.
    Liu Y, Pham X, Zhang L, Chen PL, Burzynski G, McGaughey DM, He S, McGrath JA et al (2014) Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling. G3 (Bethesda) 5(1):61–72.  https://doi.org/10.1534/g3.114.015636 Google Scholar
  183. 183.
    Garza JC, Qi X, Gjeluci K, Leussis MP, Basu H, Reis SA, Zhao WN, Piguel NH et al (2018) Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling. Transl Psychiatry 8(1):135.  https://doi.org/10.1038/s41398-018-0182-y Google Scholar
  184. 184.
    Pilotte J, Kiosses W, Chan SW, Makarenkova HP, Dupont-Versteegden E, Vanderklish PW (2018) Morphoregulatory functions of the RNA-binding motif protein 3 in cell spreading, polarity and migration. Sci Rep 8(1):7367.  https://doi.org/10.1038/s41598-018-25668-2 Google Scholar
  185. 185.
    Geraets RD, Koh S, Hastings ML, Kielian T, Pearce DA, Weimer JM (2016) Moving towards effective therapeutic strategies for neuronal ceroid lipofuscinosis. Orphanet J Rare Dis 11:40.  https://doi.org/10.1186/s13023-016-0414-2 Google Scholar
  186. 186.
    Cooper JD, Tarczyluk MA, Nelvagal HR (2015) Towards a new understanding of NCL pathogenesis. Biochim Biophys Acta 1852(10 Pt B):2256–2261.  https://doi.org/10.1016/j.bbadis.2015.05.014 Google Scholar
  187. 187.
    Mole SE, Cotman SL (2015) Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta 1852(10 Pt B):2237–2241.  https://doi.org/10.1016/j.bbadis.2015.05.011 Google Scholar
  188. 188.
    Moutal A, Eyde N, Telemi E, Park KD, Xie JY, Dodick DW, Porreca F, Khanna R (2016) Efficacy of (S)-Lacosamide in preclinical models of cephalic pain. Pain Rep 1(1):e565.  https://doi.org/10.1097/PR9.0000000000000565 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology, College of MedicineUniversity of ArizonaTucsonUSA
  2. 2.Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsUSA
  3. 3.Department of Pediatrics, Sanford School of MedicineUniversity of South DakotaSioux FallsUSA
  4. 4.Department of Veterans Affairs, Jesse Brown VA Medical CenterUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Department of AnesthesiologyUniversity of ArizonaTucsonUSA
  6. 6.The Center for Innovation in Brain SciencesThe University of Arizona Health SciencesTucsonUSA

Personalised recommendations