Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 7032–7044 | Cite as

Molecular Targets in Alzheimer’s Disease

  • Geir BjørklundEmail author
  • Jan Aaseth
  • Maryam Dadar
  • Salvatore Chirumbolo
Article

Abstract

Alzheimer’s disease (AD) is known as a devastating neurodegenerative disorder in aged subjects, which is related to multiple heterogeneous genetic factors. The two basic pathological aspects of AD are related to amyloid beta (Aβ) peptides and tau proteins. Some researchers have demonstrated plaques and tangles as apparently primary lesions. Also, experimental data propose that these two lesions are intimately related. In the present review, we highlight some molecular mechanisms linking tau and Aβ toxicities involving oxidative stress, aging, Aβ turnover, the contribution of thiol groups, and the role mitochondrial activities in the AD pathogenesis. Understanding the interplay of these mechanisms as parts of common pathophysiological pathways could reveal molecular targets to control or even treat AD.

Keywords

Alzheimer’s disease Amyloid beta Tau protein Oxidative stress 

Notes

References

  1. 1.
    Green KN, Johnston HM, Burnett ME, Brewer SM (2017) Hybrid antioxidant and metal sequestering small molecules targeting the molecular features of Alzheimer’s disease. Comment Inorg Chem 37(3):146–167CrossRefGoogle Scholar
  2. 2.
    Farhang M, Miranda-Castillo C, Rubio M, Furtado G (2019) Impact of mind-body interventions in older adults with mild cognitive impairment: a systematic review. Int Psychogeriatr:1–24Google Scholar
  3. 3.
    Ansart M, Epelbaum S, Gagliardi G, Colliot O, Dormont D, Dubois B, Hampel H, Durrleman S et al (2019) Reduction of recruitment costs in preclinical AD trials: validation of automatic pre-screening algorithm for brain amyloidosis. Stat Methods Med Res 30:0962280218823036Google Scholar
  4. 4.
    Prince M, Wimo A, Guerchet M, Ali G, Wu Y, Prina M (2015) World Alzheimer report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International, London. http://www.alz.co.uk/research/world-report-2015. Accessed 6 Apr 2019
  5. 5.
    Editors PM (2016) Dementia across the lifespan and around the globe—pathophysiology, prevention, treatment, and societal impact: a call for papers. Public Library of Science,Google Scholar
  6. 6.
    Brayne C, Miller B (2017) Dementia and aging populations—a global priority for contextualized research and health policy. PLoS Med 14(3):e1002275CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kozlov S, Afonin A, Evsyukov I, Bondarenko A (2017) Alzheimer’s disease: as it was in the beginning. Rev Neurosci 28(8):825–843CrossRefPubMedGoogle Scholar
  8. 8.
    Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed) 5:167–177CrossRefGoogle Scholar
  9. 9.
    Dorszewska J, Prendecki M, Oczkowska A, Dezor M, Kozubski W (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(9):952–963CrossRefPubMedGoogle Scholar
  10. 10.
    Jayne T, Newman M, Verdile G, Sutherland G, Muench G, Musgrave I, Nik M, Hani S et al (2016) Evidence for and against a pathogenic role of reduced γ-secretase activity in familial Alzheimer’s disease. J Alzheimers Dis 52(3):781–799Google Scholar
  11. 11.
    Swerdlow RH, Burns JM, Khan SM (2014) The Alzheimer’s disease mitochondrial cascade hypothesis: progress and perspectives. Biochim Biophys Acta 1842(8):1219–1231CrossRefPubMedGoogle Scholar
  12. 12.
    Selkoe DJ (2005) Defining molecular targets to prevent Alzheimer disease. Arch Neurol 62(2):192–195CrossRefPubMedGoogle Scholar
  13. 13.
    Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS (2003) A critical analysis of new molecular targets and strategies for drug developments in Alzheimer’s disease. Curr Drug Targets 4(2):97–112CrossRefPubMedGoogle Scholar
  14. 14.
    Meleleo D, Notarachille G, Mangini V, Arnesano F (2019) Concentration-dependent effects of mercury and lead on Aβ42: possible implications for Alzheimer’s disease. Eur Biophys J 48(2):173–187 1-15CrossRefPubMedGoogle Scholar
  15. 15.
    Martikainen IK, Kemppainen N, Johansson J, Teuho J, Helin S, Liu Y, Helisalmi S, Soininen H, Parkkola R, Ngandu T, Kivipelto M, Rinne JO (2019) Brain β-amyloid and atrophy in individuals at increased risk of cognitive decline. AJNR Am J Neuroradiol 40(1):80–85Google Scholar
  16. 16.
    Hampel H, Mesulam M-M, Cuello AC, Khachaturian AS, Vergallo A, Farlow M, Snyder P, Giacobini E et al (2019) Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. J Prev Alzheimers Dis 6(1):2–15Google Scholar
  17. 17.
    Basaure P, Guardia-Escote L, Cabré M, Peris-Sampedro F, Sánchez-Santed F, Domingo JL, Colomina MT (2019) Learning, memory and the expression of cholinergic components in mice are modulated by the pesticide chlorpyrifos depending upon age at exposure and apolipoprotein E (APOE) genotype. Arch Toxicol 1–15Google Scholar
  18. 18.
    Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349(6311):704–706Google Scholar
  19. 19.
    Cho Y, Kwon O, Park M, Kim T, Chung S (2019) Elevated cellular cholesterol in familial Alzheimer’s presenilin 1 mutation is associated with lipid raft localization of β-amyloid precursor protein. PLoS One 14(1):e0210535–e0210535CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Veugelen S, Saito T, Saido TC, Chávez-Gutiérrez L, De Strooper B (2016) Familial Alzheimer’s disease mutations in presenilin generate amyloidogenic Aβ peptide seeds. Neuron 90(2):410–416CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao B, Liu P, Wei M, Li Y, Liu J, Ma L, Shang S, Jiang Y, Huo K, Wang J, Qu Q3 (2019) Chronic sleep restriction induces Aβ accumulation by disrupting the balance of Aβ production and clearance in rats. Neurochem Res 44(4):859–873Google Scholar
  22. 22.
    Devi KP, Shanmuganathan B, Manayi A, Nabavi SF, Nabavi SM (2017) Molecular and therapeutic targets of genistein in Alzheimer’s disease. Mol Neurobiol 54(9):7028–7041CrossRefPubMedGoogle Scholar
  23. 23.
    Vezzani A (2005) Inflammation and epilepsy. Epilepsy Curr 5(1):1–6CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kamat P, Vacek J, Kalani A, Tyagi N (2015) Homocysteine induced cerebrovascular dysfunction: a link to Alzheimer’s disease etiology. Open Neurosci J 9:9–14Google Scholar
  25. 25.
    Humpel C (2011) Chronic mild cerebrovascular dysfunction as a cause for Alzheimer’s disease? Exp Gerontol 46(4):225–232CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ray B, Lahiri DK (2009) Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 9(4):434–444CrossRefPubMedGoogle Scholar
  27. 27.
    Abolhassani N, Leon J, Sheng Z, Oka S, Hamasaki H, Iwaki T, Nakabeppu Y (2017) Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer’s disease brain. Mech Ageing Dev 161:95–104CrossRefPubMedGoogle Scholar
  28. 28.
    Area-Gomez E, Schon EA (2017) On the pathogenesis of Alzheimer’s disease: the MAM hypothesis. FASEB J 31(3):864–867CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yoshida H, Meng P, Matsumiya T, Tanji K, Hayakari R, Xing F, Wang L, Tsuruga K et al (2014) Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci Res 79:83–93Google Scholar
  30. 30.
    Moskovitz J (2007) Prolonged selenium deficient diet in MsrA knockout mice causes enhanced oxidative modification to proteins and affects the levels of antioxidant enzymes in a tissue-specific manner. Free Radic Res 41(2):162–171CrossRefPubMedGoogle Scholar
  31. 31.
    Wang X, Su B, Perry G, Smith MA, Zhu X (2007) Insights into amyloid-β-induced mitochondrial dysfunction in Alzheimer disease. Free Radic Biol Med 43(12):1569–1573CrossRefPubMedGoogle Scholar
  32. 32.
    Alikhani N, Guo L, Yan S, Du H, Pinho CM, Chen JX, Glaser E, Yan SS (2011) Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria. J Alzheimers Dis 27(1):75–87CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Alikhani N, Ankarcrona M, Glaser E (2009) Mitochondria and Alzheimer’s disease: amyloid-β peptide uptake and degradation by the presequence protease, hPreP. J Bioenerg Biomembr 41(5):447–451CrossRefPubMedGoogle Scholar
  34. 34.
    Bückig A, Tikkanen R, Herzog V, Schmitz A (2002) Cytosolic and nuclear aggregation of the amyloid ß-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118(5):353–360CrossRefPubMedGoogle Scholar
  35. 35.
    Schmitz A, Schneider A, Kummer MP, Herzog V (2004) Endoplasmic reticulum-localized amyloid β-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 5(2):89–101CrossRefPubMedGoogle Scholar
  36. 36.
    Lai W-B, Wang B-J, Hu M-K, Hsu W-M, Her GM, Liao Y-F (2014) Ligand-dependent activation of EphA4 signaling regulates the proteolysis of amyloid precursor protein through a Lyn-mediated pathway. Mol Neurobiol 49(2):1055–1068CrossRefPubMedGoogle Scholar
  37. 37.
    Ghosal K, Vogt DL, Liang M, Shen Y, Lamb BT, Pimplikar SW (2009) Alzheimer’s disease-like pathological features in transgenic mice expressing the APP intracellular domain. Proc Natl Acad Sci 106(43):18367–18372CrossRefPubMedGoogle Scholar
  38. 38.
    Kharbanda S, Yuan Z-M, Rubin E, Weichselbaum R, Kufe D (1994) Activation of Src-like p56/p53lyn tyrosine kinase by ionizing radiation. J Biol Chem 269(32):20739–20743PubMedGoogle Scholar
  39. 39.
    Rozsnyay Z, Sarmay G, Gergely J (1995) Rapid desensitization of B-cell receptor by a dithiol-reactive protein tyrosine phosphatase inhibitor: uncoupling of membrane IgM from syk inhibits signals leading to Ca2+ mobilization. Immunol Lett 44(2–3):149–156CrossRefPubMedGoogle Scholar
  40. 40.
    Mallozzi C, Di Stasi AMM, Minetti M (2001) Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett 503(2–3):189–195CrossRefPubMedGoogle Scholar
  41. 41.
    Mòdol T, Natal C, De Obanos MPP, De Miguel ED, Iraburu MJ, López-Zabalza MJ (2011) Apoptosis of hepatic stellate cells mediated by specific protein nitration. Biochem Pharmacol 81(3):451–458CrossRefPubMedGoogle Scholar
  42. 42.
    Combs CK, Karlo JC, Kao S-C, Landreth GE (2001) β-Amyloid stimulation of microglia and monocytes results in TNFα-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21(4):1179–1188CrossRefPubMedGoogle Scholar
  43. 43.
    Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37(16):5633–5642CrossRefPubMedGoogle Scholar
  44. 44.
    Lee S-R, Kwon K-S, Kim S-R, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273(25):15366–15372CrossRefPubMedGoogle Scholar
  45. 45.
    Lane AE, Tan JT, Hawkins CL, Heather AK, Davies MJ (2010) The myeloperoxidase-derived oxidant HOSCN inhibits protein tyrosine phosphatases and modulates cell signalling via the mitogen-activated protein kinase (MAPK) pathway in macrophages. Biochem J 430(1):161–169CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Su T, Li X, Liu N, Pan S, Lu J, Yang J, Zhang Z (2012) Real-time imaging elucidates the role of H2O2 in regulating kinetics of epidermal growth factor-induced and Src-mediated tyrosine phosphorylation signaling. J Biomed Opt 17(7):0760151–07601511CrossRefGoogle Scholar
  47. 47.
    Stasi A, Mallozzi C, Macchia G, Petrucci TC, Minetti M (1999) Peroxynitrite induces tyrosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 73(2):727–735CrossRefPubMedGoogle Scholar
  48. 48.
    Gracanin M, Davies MJ (2007) Inhibition of protein tyrosine phosphatases by amino acid, peptide, and protein hydroperoxides: potential modulation of cell signaling by protein oxidation products. Free Radic Biol Med 42(10):1543–1551CrossRefPubMedGoogle Scholar
  49. 49.
    Sunkaria A, Yadav A, Bhardwaj S, Sandhir R (2017) Postnatal proteasome inhibition promotes amyloid-β aggregation in hippocampus and impairs spatial learning in adult mice. Neuroscience 367:47–59CrossRefPubMedGoogle Scholar
  50. 50.
    Shang F, Taylor A (2011) Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease 1, 2. Free Radic Biol Med 32(11):1084–1089CrossRefPubMedGoogle Scholar
  52. 52.
    Louie JL, Kapphahn RJ, Ferrington DA (2002) Proteasome function and protein oxidation in the aged retina. Exp Eye Res 75(3):271–284CrossRefPubMedGoogle Scholar
  53. 53.
    Kapphahn RJ, Bigelow EJ, Ferrington DA (2007) Age-dependent inhibition of proteasome chymotrypsin-like activity in the retina. Exp Eye Res 84(4):646–654CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Davies JM, Cillard J, Friguet B, Cadenas E, Cadet J, Cayce R, Fishmann A, Liao D et al (2017) The Oxygen Paradox, the French Paradox, and age-related diseases. GeroScience 39(5-6):499–550 1–52Google Scholar
  55. 55.
    Taruno A, Sun H, Nakajo K, Murakami T, Ohsaki Y, Kido MA, Ono F, Marunaka Y (2017) Post-translational palmitoylation controls the voltage gating and lipid raft association of CALHM1 channel. J Physiol 595(18):6121–6145CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Burnouf S, Grönke S, Augustin H, Dols J, Gorsky MK, Werner J, Kerr F, Alic N et al (2016) Deletion of endogenous tau proteins is not detrimental in Drosophila. Sci Rep 6:23102Google Scholar
  57. 57.
    Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130CrossRefPubMedGoogle Scholar
  58. 58.
    Šimić G, Babić Leko M, Wray S, Harrington C, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L et al (2016) Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6(1):6Google Scholar
  59. 59.
    Liu Z, Li T, Li P, Wei N, Zhao Z, Liang H, Ji X, Chen W et al (2015) Wei J (2015) The ambiguous relationship of oxidative stress, tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxidative Med Cell Longev 2015:352723Google Scholar
  60. 60.
    Iijima-Ando K, Zhao L, Gatt A, Shenton C, Iijima K (2010) A DNA damage-activated checkpoint kinase phosphorylates tau and enhances tau-induced neurodegeneration. Hum Mol Genet 19(10):1930–1938CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Mendoza J, Sekiya M, Taniguchi T, Iijima KM, Wang R, Ando K (2013) Global analysis of phosphorylation of tau by the checkpoint kinases Chk1 and Chk2 in vitro. J Proteome Res 12(6):2654–2665CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Liu Z, Li P, Wu J, Wang Y, Li P, Hou X, Zhang Q, Wei N, Zhao Z, Liang H, Wei J (2015) The cascade of oxidative stress and tau protein autophagic dysfunction in Alzheimer’s disease. In: Zerr I (ed) Alzheimer’s Disease - Challenges for the Future. Intech, Rijeka, pp 27–45.  https://doi.org/10.5772/59980
  63. 63.
    Hernandez F, Lucas JJ, Avila J (2013) GSK3 and tau: two convergence points in Alzheimer’s disease. J Alzheimers Dis 33(s1):S141–S144CrossRefPubMedGoogle Scholar
  64. 64.
    Li G, Yin H, Kuret J (2004) Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules. J Biol Chem 279(16):15938–15945CrossRefPubMedGoogle Scholar
  65. 65.
    Papasozomenos SC, Binder LI (1987) Phosphorylation determines two distinct species of tau in the central nervous system. Cytoskeleton 8(3):210–226CrossRefGoogle Scholar
  66. 66.
    Migheli A, Butler M, Brown K, Shelanski M (1988) Light and electron microscope localization of the microtubule-associated tau protein in rat brain. J Neurosci 8(6):1846–1851CrossRefPubMedGoogle Scholar
  67. 67.
    Couchie D, Charrière-Bertrand C, Nunez J (1988) Expression of the mRNA for τ proteins during brain development and in cultured neurons and astroglial cells. J Neurochem 50(6):1894–1899CrossRefPubMedGoogle Scholar
  68. 68.
    Terry RD (1996) The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J Neuropathol Exp Neurol 55(10):1023–1025CrossRefPubMedGoogle Scholar
  69. 69.
    Simic G, Gnjidic M, Kostovic I (1998) Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer'’s disease. Period Biol 100(2):165–173Google Scholar
  70. 70.
    Giraldo E, Lloret A, Fuchsberger T, Viña J (2014) Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lloret A, Fuchsberger T, Giraldo E, Viña J (2015) Molecular mechanisms linking amyloid β toxicity and tau hyperphosphorylation in Alzheimer’s disease. Free Radic Biol Med 83:186–191CrossRefPubMedGoogle Scholar
  72. 72.
    Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266(7):4244–4250PubMedGoogle Scholar
  73. 73.
    Mohr S, Stamler JS, Brüne B (1994) Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents. FEBS Lett 348(3):223–227CrossRefPubMedGoogle Scholar
  74. 74.
    Poole LB (2005) Bacterial defenses against oxidants: mechanistic features of cysteine-based peroxidases and their flavoprotein reductases. Arch Biochem Biophys 433(1):240–254CrossRefPubMedGoogle Scholar
  75. 75.
    Aaseth J, Alexander J, Bjørklund G, Hestad K, Dusek P, Roos PM, Alehagen U (2016) Treatment strategies in Alzheimer’s disease: a review with focus on selenium supplementation. Biometals 29(5):827–839CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Solovyev N, Drobyshev E, Bjørklund G, Dubrovskii Y, Lysiuk R, Rayman MP (2018) Selenium, selenoprotein P, and Alzheimer’s disease: is there a link? Free Radic Biol Med 127:124–133CrossRefPubMedGoogle Scholar
  77. 77.
    Barja G (2017) The cell aging regulation system (CARS). Reactive Oxygen Species 3(9):148–183Google Scholar
  78. 78.
    Husom AD, Peters EA, Kolling EA, Fugere NA, Thompson LV, Ferrington DA (2004) Altered proteasome function and subunit composition in aged muscle. Arch Biochem Biophys 421(1):67–76CrossRefPubMedGoogle Scholar
  79. 79.
    Ferrington DA, Husom AD, Thompson LV (2005) Altered proteasome structure, function, and oxidation in aged muscle. The FASEB J 19(6):644–646CrossRefPubMedGoogle Scholar
  80. 80.
    Shibatani T, Nazir M, Ward WF (1996) Alteration of rat liver 20S proteasome activities by age and food restriction. J Gerontol A Biol Sci Med Sci 51(5):B316–B322CrossRefPubMedGoogle Scholar
  81. 81.
    Chen C-Y, Willard D, Rudolph J (2009) Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry 48(6):1399–1409CrossRefPubMedGoogle Scholar
  82. 82.
    Hayashi T, Goto S (1998) Age-related changes in the 20S and 26S proteasome activities in the liver of male F344 rats. Mech Ageing Dev 102(1):55–66CrossRefPubMedGoogle Scholar
  83. 83.
    Bulteau A-L, Petropoulos I, Friguet B (2000) Age-related alterations of proteasome structure and function in aging epidermis. Exp Gerontol 35(6):767–777CrossRefPubMedGoogle Scholar
  84. 84.
    Petropoulos I, Conconi M, Wang X, Hoenel B, Brégégère F, Milner Y, Friguet B (2000) Increase of oxidatively modified protein is associated with a decrease of proteasome activity and content in aging epidermal cells. J Gerontol A Biol Sci Med Sci 55(05):B220–B227CrossRefPubMedGoogle Scholar
  85. 85.
    Bulteau A-L, Szweda LI, Friguet B (2002) Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397(2):298–304CrossRefPubMedGoogle Scholar
  86. 86.
    Carrard G, Dieu M, Raes M, Toussaint O, Friguet B (2003) Impact of ageing on proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol 35(5):728–739CrossRefPubMedGoogle Scholar
  87. 87.
    Kretz-Remy C, Arrigo A-P (2003) Modulation of the chymotrypsin-like activity of the 20S proteasome by intracellular redox status: effects of glutathione peroxidase-1 overexpression and antioxidant drugs. Biol Chem 384(4):589–595CrossRefPubMedGoogle Scholar
  88. 88.
    Caro P, Gómez J, López-Torres M, Sánchez I, Naudí A, Jove M, Pamplona R, Barja G (2008) Forty percent and eighty percent methionine restriction decrease mitochondrial ROS generation and oxidative stress in rat liver. Biogerontology 9(3):183–196CrossRefPubMedGoogle Scholar
  89. 89.
    López-Torres M, Barja G (2008) Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction: possible implications for humans. Biochim Biophys Acta Gen 1780(11):1337–1347CrossRefGoogle Scholar
  90. 90.
    Sanchez-Roman I, Barja G (2013) Regulation of longevity and oxidative stress by nutritional interventions: role of methionine restriction. Exp Gerontol 48(10):1030–1042CrossRefPubMedGoogle Scholar
  91. 91.
    Pomatto LC, Wong S, Carney C, Shen B, Tower J, Davies KJ (2017) The age-and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging (Albany NY) 9(4):1153–1185CrossRefGoogle Scholar
  92. 92.
    Glaser E, Alikhani N (2010) The organellar peptidasome, PreP: a journey from Arabidopsis to Alzheimer’s disease. Biochim Biophys Acta Gen 1797(6):1076–1080CrossRefGoogle Scholar
  93. 93.
    Kmiec B, Glaser E (2012) A novel mitochondrial and chloroplast peptidasome, PreP. Physiol Plant 145(1):180–186CrossRefPubMedGoogle Scholar
  94. 94.
    Falkevall A, Alikhani N, Bhushan S, Pavlov PF, Busch K, Johnson KA, Eneqvist T, Tjernberg L et al (2006) Degradation of the amyloid β-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem 281(39):29096–29104Google Scholar
  95. 95.
    Teixeira PF, Pinho CM, Branca RM, Lehtiö J, Levine RL, Glaser E (2012) In vitro oxidative inactivation of human presequence protease (hPreP). Free Radic Biol Med 53(11):2188–2195CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Ieva R, Heißwolf AK, Gebert M, Vögtle F-N, Wollweber F, Mehnert CS, Oeljeklaus S, Warscheid B et al (2013) Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat Commun 4:2853Google Scholar
  97. 97.
    Chen J, Teixeira PF, Glaser E, Levine RL (2014) Mechanism of oxidative inactivation of human presequence protease by hydrogen peroxide. Free Radic Biol Med 77:57–63CrossRefPubMedGoogle Scholar
  98. 98.
    Fang D, Wang Y, Zhang Z, Du H, Yan S, Sun Q, Zhong C, Wu L et al (2015) Increased neuronal PreP activity reduces Aβ accumulation, attenuates neuroinflammation and improves mitochondrial and synaptic function in Alzheimer disease’s mouse model. Hum Mol Genet 24(18):5198–5210Google Scholar
  99. 99.
    Meng L-S, Li B, Li D-N, Wang Y-h, Lin Y, Meng X-J, Sun X-Y, Liu N (2017) Cyanidin-3-O-glucoside attenuates amyloid-beta (1–40)-induced oxidative stress and apoptosis in SH-SY5Y cells through a Nrf2 mechanism. J Funct Foods 38:474–485CrossRefGoogle Scholar
  100. 100.
    Ill-Raga G, Ramos-Fernández E, Guix FX, Tajes M, Bosch-Morató M, Palomer E, Godoy J, Belmar S et al (2010) Amyloid-β peptide fibrils induce nitro-oxidative stress in neuronal cells. J Alzheimers Dis 22(2):641–652Google Scholar
  101. 101.
    Zhang X, Wu M, Lu F, Luo N, He Z-P, Yang H (2014) Involvement of α7 nAChR signaling cascade in epigallocatechin gallate suppression of β-amyloid-induced apoptotic cortical neuronal insults. Mol Neurobiol 49(1):66–77CrossRefPubMedGoogle Scholar
  102. 102.
    Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2017) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768(8):1976–1990CrossRefGoogle Scholar
  104. 104.
    Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED (2005) Determination of mitochondrial nitric oxide synthase activity. Methods Enzymol 396:424–444CrossRefPubMedGoogle Scholar
  105. 105.
    Vinas J, Sola A, Hotter G (2006) Mitochondrial NOS upregulation during renal I/R causes apoptosis in a peroxynitrite-dependent manner. Kidney Int 69(8):1403–1409CrossRefPubMedGoogle Scholar
  106. 106.
    Chtourou Y, Aouey B, Aroui S, Kebieche M, Fetoui H (2016) Anti-apoptotic and anti-inflammatory effects of naringin on cisplatin-induced renal injury in the rat. Chem Biol Interact 243:1–9CrossRefPubMedGoogle Scholar
  107. 107.
    Zuo L, Hemmelgarn BT, Chuang C-C, Best TM (2015) The role of oxidative stress-induced epigenetic alterations in amyloid-β production in Alzheimer’s disease. Oxidative Med Cell Longev 2015:604658CrossRefGoogle Scholar
  108. 108.
    Rodrigues C, Solá S, Silva R, Brites D (2000) Bilirubin and amyloid-beta peptide induce cytochrome c release through mitochondrial membrane permeabilization. Mol Med 6(11):936–946CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Cardoso SM, Swerdlow RH, Oliveira CR (2002) Induction of cytochrome c-mediated apoptosis by amyloid β 25-35 requires functional mitochondria. Brain Res 931(2):117–125CrossRefGoogle Scholar
  110. 110.
    Shevtzova E, Kireeva E, Bachurin S (2001) Effect of beta-amyloid peptide fragment 25-35 on nonselective permeability of mitochondria. Bull Exp Biol Med 132(6):1173–1176CrossRefPubMedGoogle Scholar
  111. 111.
    Godoy JA, Lindsay CB, Quintanilla RA, Carvajal FJ, Cerpa W, Inestrosa NC (2017) Quercetin exerts differential neuroprotective effects against H2O2 and Aβ aggregates in hippocampal neurons: the role of mitochondria. Mol Neurobiol 54(9):7116–7128CrossRefPubMedGoogle Scholar
  112. 112.
    Pérez MJ, Vergara-Pulgar K, Jara C, Cabezas-Opazo F, Quintanilla RA (2018) Caspase-cleaved tau impairs mitochondrial dynamics in Alzheimer’s disease. Mol Neurobiol 55(2):1004–1018Google Scholar
  113. 113.
    Rajasekhar K, Mehta K, Govindaraju T (2018) Hybrid multifunctional modulators inhibit multifaceted Aβ toxicity and prevent mitochondrial damage. ACS Chem Neurosci 9(6):1432–1440CrossRefPubMedGoogle Scholar
  114. 114.
    Takahashi RH, Nagao T, Gouras GK (2017) Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol Int 67(4):185–193CrossRefPubMedGoogle Scholar
  115. 115.
    Sakono M, Kidani T (2017) ATP-independent inhibition of amyloid beta fibrillation by the endoplasmic reticulum resident molecular chaperone GRP78. Biochem Biophys Res Commun 493(1):500–503CrossRefPubMedGoogle Scholar
  116. 116.
    Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X (2015) Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. J Integr Plant Biol 57(6):550–561CrossRefPubMedGoogle Scholar
  117. 117.
    Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62(2):e12379CrossRefGoogle Scholar
  118. 118.
    Ruszkiewicz J, Albrecht J (2015) Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 88:66–72CrossRefPubMedGoogle Scholar
  119. 119.
    Lynn S, Huang EJ, Elchuri S, Naeemuddin M, Nishinaka Y, Yodoi J, Ferriero DM, Epstein CJ et al (2005) Selective neuronal vulnerability and inadequate stress response in superoxide dismutase mutant mice. Free Radic Biol Med 38(6):817–828Google Scholar
  120. 120.
    Kairisalo M, Bonomo A, Hyrskyluoto A, Mudò G, Belluardo N, Korhonen L, Lindholm D (2011) Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6. 3-cells. Neurosci Lett 488(3):263–266CrossRefPubMedGoogle Scholar
  121. 121.
    Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Vitorica J, Machado A, Satrústegui J (1984) Age-dependent variations in peroxide-utilizing enzymes from rat brain mitochondria and cytoplasm. J Neurochem 42(2):351–356CrossRefPubMedGoogle Scholar
  123. 123.
    Ansari MA, Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex. J Neuropathol Exp Neurol 69(2):155–167CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Kudin AP, Augustynek B, Lehmann AK, Kovács R, Kunz WS (2012) The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim Biophys Acta 1817(10):1901–1906CrossRefPubMedGoogle Scholar
  125. 125.
    Hattori F, Murayama N, Noshita T, Oikawa S (2003) Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J Neurochem 86(4):860–868CrossRefPubMedGoogle Scholar
  126. 126.
    Hwang IK, Yoo K-Y, Kim DW, Lee CH, Choi JH, Kwon Y-G, Kim Y-M, Choi SY et al (2010) Changes in the expression of mitochondrial peroxiredoxin and thioredoxin in neurons and glia and their protective effects in experimental cerebral ischemic damage. Free Radic Biol Med 48(9):1242–1251Google Scholar
  127. 127.
    Angeles DC, Gan BH, Onstead L, Zhao Y, Lim KL, Dachsel J, Melrose H, Farrer M et al (2011) Mutations in LRRK2 increase phosphorylation of peroxiredoxin 3 exacerbating oxidative stress-induced neuronal death. Hum Mutat 32(12):1390–1397Google Scholar
  128. 128.
    Yang H-Y, Kwon J, Cho E-J, Choi H-I, Park C, Park H-R, Park S-H, Chung K-J et al (2010) Proteomic analysis of protein expression affected by peroxiredoxin V knock-down in hypoxic kidney. J Proteome Res 9(8):4003–4015Google Scholar
  129. 129.
    Chen L, Yoo S-E, Na R, Liu Y, Ran Q (2012) Cognitive impairment and increased Aβ levels induced by paraquat exposure are attenuated by enhanced removal of mitochondrial H2O2. Neurobiol Aging 33(2):432. e415–432. e426CrossRefGoogle Scholar
  130. 130.
    Simoni S, Linard D, Hermans E, Knoops B, Goemaere J (2013) Mitochondrial peroxiredoxin-5 as potential modulator of mitochondria-ER crosstalk in MPP+-induced cell death. J Neurochem 125(3):473–485CrossRefPubMedGoogle Scholar
  131. 131.
    Zhu C, Xu F, Fukuda A, Wang X, Fukuda H, Korhonen L, Hagberg H, Lannering B et al (2007) X chromosome-linked inhibitor of apoptosis protein reduces oxidative stress after cerebral irradiation or hypoxia-ischemia through up-regulation of mitochondrial antioxidants. Eur J Neurosci 26(12):3402–3410Google Scholar
  132. 132.
    Williams W, Chung Y (2006) Evidence for an age-related attenuation of cerebral microvascular antioxidant response to oxidative stress. Life Sci 79(17):1638–1644CrossRefPubMedGoogle Scholar
  133. 133.
    Lopert P, Day BJ, Patel M (2012) Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7(11):e50683CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Ahn J-C, Kang J-W, Shin J-I, Chung P-S (2012) Combination treatment with photodynamic therapy and curcumin induces mitochondria-dependent apoptosis in AMC-HN3 cells. Int J Oncol 41(6):2184–2190CrossRefPubMedGoogle Scholar
  135. 135.
    Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285(36):27850–27858CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Satrustegui J, Richter C (1984) The role of hydroperoxides as calcium release agents in rat brain mitochondria. Arch Biochem Biophys 233(2):736–740CrossRefPubMedGoogle Scholar
  137. 137.
    Andreyev A, Kushnareva YE, Murphy A, Starkov A (2015) Mitochondrial ROS metabolism: 10 years later. Biochem Mosc 80(5):517–531CrossRefGoogle Scholar
  138. 138.
    Jong CJ, Ito T, Mozaffari M, Azuma J, Schaffer S (2010) Effect of β-alanine treatment on mitochondrial taurine level and 5-taurinomethyluridine content. J Biomed Sci 17(1):S25CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Tsutomu S, Asuteka N, Takeo S (2011) Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. Wiley Interdiscip Rev: RNA 2(3):376–386CrossRefGoogle Scholar
  140. 140.
    Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K (2002) Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J 21(23):6581–6589CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Umeda N, Suzuki T, Yukawa M, Ohya Y, Shindo H, Watanabe K, Suzuki T (2005) Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs implications for the molecular pathogenesis of human mitochondrial diseases. J Biol Chem 280(2):1613–1624CrossRefPubMedGoogle Scholar
  142. 142.
    Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232CrossRefPubMedGoogle Scholar
  143. 143.
    Akram M (2014) Citric acid cycle and role of its intermediates in metabolism. Cell Biochem Biophys 68(3):475–478CrossRefPubMedGoogle Scholar
  144. 144.
    Du X, Li H, Wang Z, Qiu S, Liu Q, Ni J (2013) Selenoprotein P and selenoprotein M block Zn 2+−mediated Aβ42 aggregation and toxicity. Metallomics 5(7):861–870Google Scholar
  145. 145.
    Florentz C, Sohm B, Tryoen-Toth P, Pütz J, Sissler M (2003) Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci CMLS 60(7):1356–1375CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Council for Nutritional and Environmental MedicineMo i RanaNorway
  2. 2.Faculty of Health and Social ScienceInland Norway University of Applied SciencesElverumNorway
  3. 3.Department of ResearchInnlandet Hospital TrustBrumunddalNorway
  4. 4.Agricultural Research, Education and Extension Organization (AREEO)Razi Vaccine and Serum Research InstituteKarajIran
  5. 5.Department of Neurosciences, Biomedicine and Movement SciencesUniversity of VeronaVeronaItaly

Personalised recommendations