Molecular Neurobiology

, Volume 56, Issue 10, pp 6716–6724 | Cite as

Neurodevelopmental Disorders: Functional Role of Ambra1 in Autism and Schizophrenia

  • Livia La Barbera
  • Francescangelo Vedele
  • Annalisa Nobili
  • Marcello D’AmelioEmail author
  • Paraskevi KrashiaEmail author


The activating molecule in Beclin-1-regulated autophagy (Ambra1) is a highly intrinsically disordered protein best known for its role as a mediator in autophagy, by favoring the formation of autophagosomes. Additional studies have revealed that Ambra1 is able to coordinate cell responses to stress conditions such as starvation, and it actively participates in cell proliferation, cytoskeletal modification, apoptosis, mitochondria removal, and cell cycle downregulation. All these functions highlight the importance of Ambra1 in crucial physiological events, including metabolism, cell death, and cell division. Importantly, Ambra1 is also crucial for proper embryonic development, and its complete absence in knock-out animal models leads to severe brain morphology defects. In line with this, it has recently been implicated in neurodevelopmental disorders affecting humans, particularly autism spectrum disorders and schizophrenia. Here, we discuss the recent links between Ambra1 and neurodevelopment, particularly focusing on its role during the maturation of hippocampal parvalbumin interneurons and its importance for maintaining a proper excitation/inhibition balance in the brain.


Ambra1 Autophagy Autism spectrum disorder Schizophrenia Hippocampus Parvalbumin interneuron Excitation/inhibition 


Funding Information

A.N. was supported by a post-doctoral Fellowship by the Collegio Ghislieri. P.K. was supported by a post-doctoral Fellowship by the Veronesi Foundation. M.D.A. was supported by an Alzheimer Association’s Research Grant (AARG-18-566270).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Fimia GM, Stoykova A, Romagnoli A et al (2007) Ambra1 regulates autophagy and development of the nervous system. Nature 447:1121–1125. Google Scholar
  2. 2.
    Cianfanelli V, De Zio D, Di Bartolomeo S et al (2015) Ambra1 at a glance. J Cell Sci 128:2003–2008. Google Scholar
  3. 3.
    Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura SI, Natsume T et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991. Google Scholar
  4. 4.
    Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC (2014) Intrinsically disordered regions in autophagy proteins. Proteins 82:565–578. Google Scholar
  5. 5.
    Nazio F, Cecconi F (2013) mTOR, AMBRA1, and autophagy: an intricate relationship. Cell Cycle Georget Tex 12:2524–2525. Google Scholar
  6. 6.
    Nazio F, Strappazzon F, Antonioli M et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416. Google Scholar
  7. 7.
    Xia P, Wang S, Huang G, du Y, Zhu P, Li M, Fan Z (2014) RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy. Cell Res 24:943–958. Google Scholar
  8. 8.
    Di Bartolomeo S, Corazzari M, Nazio F et al (2010) The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy. J Cell Biol 191:155–168. Google Scholar
  9. 9.
    Van Humbeeck C, Cornelissen T, Hofkens H et al (2011) Parkin interacts with Ambra1 to induce mitophagy. J Neurosci 31:10249–10261. Google Scholar
  10. 10.
    Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM, Campello S, Nardacci R et al (2015) AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22:419–432. Google Scholar
  11. 11.
    Di Rita A, Peschiaroli A, D′Acunzo P, et al (2018) HUWE1 E3 ligase promotes PINK1/PARKIN-independent mitophagy by regulating AMBRA1 activation via IKKα. Nat Commun 9.
  12. 12.
    Di Rita A, D’Acunzo P, Simula L et al (2018) AMBRA1-mediated mitophagy counteracts oxidative stress and apoptosis induced by neurotoxicity in human neuroblastoma SH-SY5Y cells. Front Cell Neurosci 12:92. Google Scholar
  13. 13.
    Benato F, Skobo T, Gioacchini G, Moro I, Ciccosanti F, Piacentini M, Fimia GM, Carnevali O et al (2013) Ambra1 knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis. Autophagy 9:476–495. Google Scholar
  14. 14.
    Nobili A, Krashia P, Cordella A, la Barbera L, Dell’Acqua MC, Caruso A, Pignataro A, Marino R et al (2018) Ambra1 shapes hippocampal inhibition/excitation balance: role in neurodevelopmental disorders. Mol Neurobiol 55:7921–7940. Google Scholar
  15. 15.
    Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM et al (2012) Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death Differ 19:1495–1504. Google Scholar
  16. 16.
    Strappazzon F, Vietri-Rudan M, Campello S, Nazio F, Florenzano F, Fimia GM, Piacentini M, Levine B et al (2011) Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy. EMBO J 30:1195–1208. Google Scholar
  17. 17.
    Strappazzon F, Di Rita A, Cianfanelli V et al (2016) Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy 12:963–975. Google Scholar
  18. 18.
    Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, de Zio D, Nazio F et al (2015) AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-MYC dephosphorylation and degradation. Nat Cell Biol 17:20–30. Google Scholar
  19. 19.
    Vázquez P, Arroba AI, Cecconi F, de la Rosa EJ, Boya P, de Pablo F (2012) Atg5 and Ambra1 differentially modulate neurogenesis in neural stem cells. Autophagy 8:187–199. Google Scholar
  20. 20.
    Fimia GM, Corazzari M, Antonioli M, Piacentini M (2013) Ambra1 at the crossroad between autophagy and cell death. Oncogene 32:3311–3318. Google Scholar
  21. 21.
    Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580. Google Scholar
  22. 22.
    Antonioli M, Albiero F, Fimia GM, Piacentini M (2015) AMBRA1-regulated autophagy in vertebrate development. Int J Dev Biol 59:109–117. Google Scholar
  23. 23.
    Skobo T, Benato F, Grumati P, Meneghetti G, Cianfanelli V, Castagnaro S, Chrisam M, di Bartolomeo S et al (2014) Zebrafish ambra1a and ambra1b knockdown impairs skeletal muscle development. PLoS One 9:e99210. Google Scholar
  24. 24.
    Heinrich A, Nees F, Lourdusamy A, Tzschoppe J, Meier S, Vollstädt-Klein S, Fauth-Bühler M, Steiner S et al (2013) From gene to brain to behavior: schizophrenia-associated variation in AMBRA1 alters impulsivity-related traits. Eur J Neurosci 38:2941–2945. Google Scholar
  25. 25.
    Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J et al (2017) Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry 7:e1247. Google Scholar
  26. 26.
    Rietschel M, Mattheisen M, Degenhardt F et al (2012) Association between genetic variation in a region on chromosome 11 and schizophrenia in large samples from Europe. Mol Psychiatry 17:906–917. Google Scholar
  27. 27.
    Dere E, Dahm L, Lu D, Hammerschmidt K, Ju A, Tantra M, Kästner A, Chowdhury K et al (2014) Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender. Front Behav Neurosci 8:181. Google Scholar
  28. 28.
    Cecconi F, Levine B (2008) The role of autophagy in mammalian development. Dev Cell 15:344–357. Google Scholar
  29. 29.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830. Google Scholar
  30. 30.
    American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders (DSM-5®, 5th edition). American Psychiatric PublishingGoogle Scholar
  31. 31.
    Krakowski MI, Czobor P (2018) Distinctive profiles of traits predisposing to violence in schizophrenia and in the general population. Schizophr Res 202:267–273. Google Scholar
  32. 32.
    McClain MB, Hasty Mills AM, Murphy LE (2017) Inattention and hyperactivity/impulsivity among children with attention-deficit/hyperactivity-disorder, autism spectrum disorder, and intellectual disability. Res Dev Disabil 70:175–184. Google Scholar
  33. 33.
    Richard-Lepouriel H, Kung A-L, Hasler R, Bellivier F, Prada P, Gard S, Ardu S, Kahn JP et al (2019) Impulsivity and its association with childhood trauma experiences across bipolar disorder, attention deficit hyperactivity disorder and borderline personality disorder. J Affect Disord 244:33–41. Google Scholar
  34. 34.
    Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF, Herman DH et al (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179. Google Scholar
  35. 35.
    Tau GZ, Peterson BS (2010) Normal development of brain circuits. Neuropsychopharmacol 35:147–168. Google Scholar
  36. 36.
    Stiles J, Jernigan TL (2010) The basics of brain development. Neuropsychol Rev 20:327–348. Google Scholar
  37. 37.
    Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N (2016) The cellular and molecular landscapes of the developing human central nervous system. Neuron 89:248–268. Google Scholar
  38. 38.
    Roeper J (2018) Closing gaps in brain disease-from overlapping genetic architecture to common motifs of synapse dysfunction. Curr Opin Neurobiol 48:45–51. Google Scholar
  39. 39.
    De Rubeis S, He X, Goldberg AP et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515:209–215. Google Scholar
  40. 40.
    Johnson MR, Shkura K, Langley SR, Delahaye-Duriez A, Srivastava P, Hill WD, Rackham OJL, Davies G et al (2016) Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nat Neurosci 19:223–232. Google Scholar
  41. 41.
    Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, Kim NS, Yoon KJ et al (2014) Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515:414–418. Google Scholar
  42. 42.
    Denève S, Alemi A, Bourdoukan R (2017) The brain as an efficient and robust adaptive learner. Neuron 94:969–977. Google Scholar
  43. 43.
    Rubin DB, Van Hooser SD, Miller KD (2015) The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85:402–417. Google Scholar
  44. 44.
    Bingol B, Sheng M (2011) Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69:22–32. Google Scholar
  45. 45.
    Marín O (2012) Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci 13:107–120. Google Scholar
  46. 46.
    Marín O (2016) Developmental timing and critical windows for the treatment of psychiatric disorders. Nat Med 22:1229–1238. Google Scholar
  47. 47.
    Selten M, van Bokhoven H, Nadif Kasri N (2018) Inhibitory control of the excitatory/inhibitory balance in psychiatric disorders. F1000Research 7:23. Google Scholar
  48. 48.
    Betancur C (2011) Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 1380:42–77. Google Scholar
  49. 49.
    Craig AM, Kang Y (2007) Neurexin-neuroligin signaling in synapse development. Curr Opin Neurobiol 17:43–52. Google Scholar
  50. 50.
    Leblond CS, Nava C, Polge A et al (2014) Meta-analysis of SHANK mutations in autism spectrum disorders: a gradient of severity in cognitive impairments. PLoS Genet 10:e1004580. Google Scholar
  51. 51.
    Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18:147–157. Google Scholar
  52. 52.
    Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911. Google Scholar
  53. 53.
    Toro R, Konyukh M, Delorme R, Leblond C, Chaste P, Fauchereau F, Coleman M, Leboyer M et al (2010) Key role for gene dosage and synaptic homeostasis in autism spectrum disorders. Trends Genet 26:363–372. Google Scholar
  54. 54.
    Washbourne P (2015) Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacol 40:4–15. Google Scholar
  55. 55.
    Dean C, Dresbach T (2006) Neuroligins and neurexins: linking cell adhesion, synapse formation and cognitive function. Trends Neurosci 29:21–29. Google Scholar
  56. 56.
    Durand CM, Betancur C, Boeckers TM et al (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27. Google Scholar
  57. 57.
    Feng J, Schroer R, Yan J et al (2006) High frequency of neurexin 1beta signal peptide structural variants in patients with autism. Neurosci Lett 409:10–13. Google Scholar
  58. 58.
    Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557. Google Scholar
  59. 59.
    Reichelt AC, Rodgers RJ, Clapcote SJ (2012) The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology 62:1519–1526. Google Scholar
  60. 60.
    Blundell J, Blaiss CA, Etherton MR et al (2010) Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 30:2115–2129. Google Scholar
  61. 61.
    Etherton MR, Blaiss CA, Powell CM, Südhof TC (2009) Mouse neurexin-1alpha deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proc Natl Acad Sci U S A 106:17998–18003. Google Scholar
  62. 62.
    Grayton HM, Missler M, Collier DA, Fernandes C (2013) Altered social behaviours in neurexin 1α knockout mice resemble core symptoms in neurodevelopmental disorders. PLoS One 8:e67114. Google Scholar
  63. 63.
    Jiang Y-H, Ehlers MD (2013) Modeling autism by SHANK gene mutations in mice. Neuron 78:8–27. Google Scholar
  64. 64.
    Peça J, Feliciano C, Ting JT et al (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472:437–442. Google Scholar
  65. 65.
    Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698. Google Scholar
  66. 66.
    Rubenstein JLR, Merzenich MM (2003) Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–267Google Scholar
  67. 67.
    Chattopadhyaya B, Cristo GD (2012) GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry 3:51. Google Scholar
  68. 68.
    Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 36:2044–2055. Google Scholar
  69. 69.
    Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK, Hussman JP, Haines JL et al (2006) Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7:167–174. Google Scholar
  70. 70.
    Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39:223–230. Google Scholar
  71. 71.
    Fatemi SH, Reutiman TJ, Folsom TD et al (2010) mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 40:743–750. Google Scholar
  72. 72.
    Fatemi SH, Folsom TD, Rooney RJ, Thuras PD (2013) mRNA and protein expression for novel GABAA receptors θ and ρ2 are altered in schizophrenia and mood disorders; relevance to FMRP-mGluR5 signaling pathway. Transl Psychiatry 3:e271. Google Scholar
  73. 73.
    Oblak AL, Gibbs TT, Blatt GJ (2010) Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem 114:1414–1423. Google Scholar
  74. 74.
    Oblak AL, Gibbs TT, Blatt GJ (2011) Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res 1380:218–228. Google Scholar
  75. 75.
    Fatemi SH, Halt AR, Stary JM et al (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810Google Scholar
  76. 76.
    Yip J, Soghomonian J-J, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113:559–568. Google Scholar
  77. 77.
    Gao R, Penzes P (2015) Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr Mol Med 15:146–167Google Scholar
  78. 78.
    Harada M, Taki MM, Nose A et al (2011) Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord 41:447–454. Google Scholar
  79. 79.
    Filice F, Vörckel KJ, Sungur AÖ, Wöhr M, Schwaller B (2016) Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 9:10. Google Scholar
  80. 80.
    Belmonte MK, Gomot M, Baron-Cohen S (2010) Visual attention in autism families: “Unaffected” sibs share atypical frontal activation. J Child Psychol Psychiatry 51:259–276. Google Scholar
  81. 81.
    Dichter GS, Felder JN, Bodfish JW (2009) Autism is characterized by dorsal anterior cingulate hyperactivation during social target detection. Soc Cogn Affect Neurosci 4:215–226. Google Scholar
  82. 82.
    Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function. Science 345:1255263. Google Scholar
  83. 83.
    Le Magueresse C, Monyer H (2013) GABAergic interneurons shape the functional maturation of the cortex. Neuron 77:388–405. Google Scholar
  84. 84.
    Pizzarelli R, Cherubini E (2011) Alterations of GABAergic signaling in autism spectrum disorders. Neural Plast 2011:297153. Google Scholar
  85. 85.
    Hashemi E, Ariza J, Rogers H et al (2017) The number of parvalbumin-expressing interneurons is decreased in the prefrontal cortex in autism. Cereb Cortex 27:1931–1943 Google Scholar
  86. 86.
    Danglot L, Triller A, Marty S (2006) The development of hippocampal interneurons in rodents. Hippocampus 16:1032–1060. Google Scholar
  87. 87.
    Kelsom C, Lu W (2013) Development and specification of GABAergic cortical interneurons. Cell Biosci 3:19. Google Scholar
  88. 88.
    Butt SJB, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin JG, Fishell G (2005) The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron 48:591–604. Google Scholar
  89. 89.
    Bezaire MJ, Soltesz I (2013) Quantitative assessment of CA1 local circuits: knowledge base for interneuron-pyramidal cell connectivity. Hippocampus 23:751–785. Google Scholar
  90. 90.
    Huang ZJ, Di Cristo G, Ango F (2007) Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci 8:673–686. Google Scholar
  91. 91.
    Nörenberg A, Hu H, Vida I et al (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci U S A 107:894–899. Google Scholar
  92. 92.
    Kubota Y, Karube F, Nomura M et al (2011) Conserved properties of dendritic trees in four cortical interneuron subtypes. Sci Rep 1:89. Google Scholar
  93. 93.
    Miles R, Tóth K, Gulyás AI, Hájos N, Freund TF (1996) Differences between somatic and dendritic inhibition in the hippocampus. Neuron 16:815–823Google Scholar
  94. 94.
    Somogyi P, Klausberger T (2005) Defined types of cortical interneuron structure space and spike timing in the hippocampus. J Physiol 562:9–26. Google Scholar
  95. 95.
    Levitt P, Eagleson KL, Powell EM (2004) Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 27:400–406. Google Scholar
  96. 96.
    Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929. Google Scholar
  97. 97.
    Cardin JA, Carlén M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai LH, Moore CI (2009) Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–667. Google Scholar
  98. 98.
    Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FEN, Bannerman DM, Rozov A, Whittington MA et al (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53:591–604. Google Scholar
  99. 99.
    Sohal VS, Zhang F, Yizhar O, Deisseroth K (2009) Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702. Google Scholar
  100. 100.
    Tukker JJ, Fuentealba P, Hartwich K, Somogyi P, Klausberger T (2007) Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo. J Neurosci 27:8184–8189. Google Scholar
  101. 101.
    Gonzalez-Burgos G, Cho RY, Lewis DA (2015) Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry 77:1031–1040. Google Scholar
  102. 102.
    Kamida A, Shimabayashi K, Oguri M et al (2016) EEG power spectrum analysis in children with ADHD. Yonago Acta Med 59:169–173Google Scholar
  103. 103.
    Karch S, Segmiller F, Hantschk I et al (2012) Increased γ oscillations during voluntary selection processes in adult patients with attention deficit/hyperactivity disorder. J Psychiatr Res 46:1515–1523. Google Scholar
  104. 104.
    Lenz D, Krauel K, Schadow J et al (2008) Enhanced gamma-band activity in ADHD patients lacks correlation with memory performance found in healthy children. Brain Res 1235:117–132. Google Scholar
  105. 105.
    Özerdem A, Güntekin B, Atagün I, Turp B, Başar E (2011) Reduced long distance gamma (28-48 Hz) coherence in euthymic patients with bipolar disorder. J Affect Disord 132:325–332. Google Scholar
  106. 106.
    Rojas DC, Wilson LB (2014) γ-Band abnormalities as markers of autism spectrum disorders. Biomark Med 8:353–368. Google Scholar
  107. 107.
    Rojas DC, Maharajh K, Teale P, Rogers SJ (2008) Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry 8:66. Google Scholar
  108. 108.
    Yordanova J, Banaschewski T, Kolev V, Woerner W, Rothenberger A (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder--evidence from event-related gamma oscillations. Clin Neurophysiol 112:1096–1108Google Scholar
  109. 109.
    Marissal T, Salazar RF, Bertollini C, Mutel S, de Roo M, Rodriguez I, Müller D, Carleton A (2018) Restoring wild-type-like CA1 network dynamics and behavior during adulthood in a mouse model of schizophrenia. Nat Neurosci 21:1412–1420. Google Scholar
  110. 110.
    Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I, Ramakrishnan C, Fenno LE et al (2017) Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci Transl Med 9:eaah6733. Google Scholar
  111. 111.
    Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro. Nature 394:186–189. Google Scholar
  112. 112.
    Gulyás AI, Szabó GG, Ulbert I et al (2010) Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus. J Neurosci 30:15134–15145. Google Scholar
  113. 113.
    Ferguson BR, Gao W-J (2018) PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits 12:37. Google Scholar
  114. 114.
    Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I et al (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178. Google Scholar
  115. 115.
    Gogolla N, Leblanc JJ, Quast KB et al (2009) Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J Neurodev Disord 1:172–181. Google Scholar
  116. 116.
    Bolton PF, Carcani-Rathwell I, Hutton J, Goode S, Howlin P, Rutter M (2011) Epilepsy in autism: features and correlates. Br J Psychiatry 198:289–294. Google Scholar
  117. 117.
    Jeste SS, Tuchman R (2015) Autism spectrum disorder and epilepsy: two sides of the same coin? J Child Neurol 30:1963–1971. Google Scholar
  118. 118.
    Viscidi EW, Triche EW, Pescosolido MF, McLean RL, Joseph RM, Spence SJ, Morrow EM (2013) Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS One 8:e67797. Google Scholar
  119. 119.
    Hunt CA, Schenker LJ, Kennedy MB (1996) PSD-95 is associated with the postsynaptic density and not with the presynaptic membrane at forebrain synapses. J Neurosci 16:1380–1388Google Scholar
  120. 120.
    Hutsler JJ, Zhang H (2010) Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res 1309:83–94. Google Scholar
  121. 121.
    Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2011) Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 14:285–293. Google Scholar
  122. 122.
    Tang G, Gudsnuk K, Kuo S-H, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83:1131–1143. Google Scholar
  123. 123.
    Inan M, Zhao M, Manuszak M, Karakaya C, Rajadhyaksha AM, Pickel VM, Schwartz TH, Goldstein PA et al (2016) Energy deficit in parvalbumin neurons leads to circuit dysfunction, impaired sensory gating and social disability. Neurobiol Dis 93:35–46. Google Scholar
  124. 124.
    Kann O (2016) The interneuron energy hypothesis: Implications for brain disease. Neurobiol Dis 90:75–85. Google Scholar
  125. 125.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. Google Scholar
  126. 126.
    Komatsu M, Waguri S, Chiba T, Murata S, Iwata JI, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. Google Scholar
  127. 127.
    Komatsu M, Wang QJ, Holstein GR, Friedrich VL, Iwata JI, Kominami E, Chait BT, Tanaka K et al (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 104:14489–14494. Google Scholar
  128. 128.
    Merenlender-Wagner A, Malishkevich A, Shemer Z et al (2015) Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 20:126–132. Google Scholar
  129. 129.
    Merenlender-Wagner A, Shemer Z, Touloumi O et al (2015) New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 10:2324–2332. Google Scholar
  130. 130.
    Nixon RA, Yang D-S (2012) Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb Perspect Biol 4.
  131. 131.
    Schneider JL, Miller AM, Woesner ME (2016) Autophagy and schizophrenia: a closer look at how dysregulation of neuronal cell homeostasis influences the pathogenesis of schizophrenia. Einstein J Biol Med EJBM 31:34–39. Google Scholar
  132. 132.
    Sragovich S, Merenlender-Wagner A, Gozes I (2017) ADNP plays a key role in autophagy: from autism to schizophrenia and Alzheimer’s disease. BioEssays 39.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Neurosciences, Department of Experimental NeurosciencesIRCCS Santa Lucia FoundationRomeItaly
  2. 2.Department of Systems MedicineUniversity of Rome ‘Tor Vergata’RomeItaly
  3. 3.Unit of Molecular Neurosciences, Department of MedicineUniversity Campus-BiomedicoRomeItaly

Personalised recommendations