Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 6673–6702 | Cite as

The Neuroprotective Role of the GM1 Oligosaccharide, II3Neu5Ac-Gg4, in Neuroblastoma Cells

  • Elena ChiricozziEmail author
  • Margherita Maggioni
  • Erika di Biase
  • Giulia Lunghi
  • Maria Fazzari
  • Nicoletta Loberto
  • Maffioli Elisa
  • Francesca Grassi Scalvini
  • Gabriella Tedeschi
  • Sandro SonninoEmail author
Article
  • 306 Downloads

Abstract

Recently, we demonstrated that the GM1 oligosaccharide, II3Neu5Ac-Gg4 (OligoGM1), administered to cultured murine Neuro2a neuroblastoma cells interacts with the NGF receptor TrkA, leading to the activation of the ERK1/2 downstream pathway and to cell differentiation. To understand how the activation of the TrkA pathway is able to trigger key biochemical signaling, we performed a proteomic analysis on Neuro2a cells treated with 50 μM OligoGM1 for 24 h. Over 3000 proteins were identified. Among these, 324 proteins were exclusively expressed in OligoGM1-treated cells. Interestingly, several proteins expressed only in OligoGM1-treated cells are involved in biochemical mechanisms with a neuroprotective potential, reflecting the GM1 neuroprotective effect. In addition, we found that the exogenous administration of OligoGM1 reduced the cellular oxidative stress in Neuro2a cells and conferred protection against MPTP neurotoxicity. These results confirm and reinforce the idea that the molecular mechanisms underlying the GM1 neurotrophic and neuroprotective effects depend on its oligosaccharide chain, suggesting the activation of a positive signaling starting at plasma membrane level.

Keywords

GM1 ganglioside GM1 oligosaccharide chain TrkA neurotrophin receptor Plasma membrane signaling Neuroprotection Shotgun label-free proteomic 

Abbreviations

Ganglioside nomenclature

is in accordance with IUPAC-IUBB recommendations [1]

GM1

II3Neu5Ac-Gg4Cer, β-Gal-(1-3)-β-GalNAc-(1-4)-[α-Neu5Ac-(2-3)]-β-Gal-(1-4)-β-Glc-Cer

OligoGM1

GM1 oligosaccharide, II3Neu5Ac-Gg4

Ctrl

Control

DMEM

Dulbecco’s modified Eagle’s medium

ERK1/2

Extracellular signal-regulated protein kinases 1 and 2

FBS

Fetal bovine serum

HPTLC

High-performance silica gel thin-layer chromatography

IPA

Ingenuity Pathway Analysis

MAPK

Mitogen-activated protein kinase

MPP+

1-Methyl-4-phenylpyridinium

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride

MS

Mass spectrometry

N2a

Neuro2a cells

NGF

Nerve growth factor

PBS

Phosphate-buffered saline

p-ERK1/2

Phosphorylated ERK1/2

p-TrkA

Phosphorylated TrkA

PM

Plasma membrane

PVDF

Polyvinylidene difluoride

RA

Retinoic acid

ROS

Reactive oxygen species

RRID

Research resource identifiers

Trk

Neurotrophin tyrosine kinase receptor

Tyr490

Tyrosine 490

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1556_MOESM1_ESM.docx (15.6 mb)
ESM 1 (DOCX 16006 kb)

References

  1. 1.
    IUPAC-IUMB JCoBN (1998) Nomenclature of glycolipids. Carbohydr Res 312:167–175CrossRefGoogle Scholar
  2. 2.
    Ledeen RW, Wu G (2015) The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem Sci 40:407–418CrossRefGoogle Scholar
  3. 3.
    Ledeen RW, Wu G (2018a) Gangliosides of the nervous system. Methods Mol Biol 1804:19–55CrossRefGoogle Scholar
  4. 4.
    Ledeen R, Wu G (2018b) Gangliosides, α-synuclein, and Parkinson’s disease. Prog Mol Biol Transl Sci 156:435–454CrossRefGoogle Scholar
  5. 5.
    Schengrund CL (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 40:397–406CrossRefGoogle Scholar
  6. 6.
    Schengrund CL, Prouty C (1988) Oligosaccharide portion of GM1 enhances process formation by S20Y neuroblastoma cells. J Neurochem 51:277–282CrossRefGoogle Scholar
  7. 7.
    Aureli M, Mauri L, Ciampa MG, Prinetti A, Toffano G, Secchieri C, Sonnino S (2016) GM1 ganglioside: past studies and future potential. Mol Neurobiol 53:1824–1842CrossRefGoogle Scholar
  8. 8.
    Schneider JS, Di Stefano L (1994) Oral administration of semisynthetic sphingolipids promotes recovery of striatal dopamine concentrations in a murine model of parkinsonism. Neurology 44:748–750CrossRefGoogle Scholar
  9. 9.
    Wu G, Lu ZH, Wang J, Wang Y, Xie X, Meyenhofer MF, Ledeen RW (2005) Enhanced susceptibility to kainate-induced seizures, neuronal apoptosis, and death in mice lacking gangliotetraose gangliosides: protection with LIGA 20, a membrane-permeant analog of GM1. J Neurosci 25:11014–11022CrossRefGoogle Scholar
  10. 10.
    Wu G, Lu ZH, Xie X, Ledeen RW (2014) Susceptibility of cerebellar granule neurons from GM2/GD2 synthase-null mice to apoptosis induced by glutamate excitotoxicity and elevated KCl: rescue by GM1 and LIGA20. Glycoconj J 21:3015–3313Google Scholar
  11. 11.
    Chiricozzi E, Pomè YD, Maggioni M, Di Biase E, Parravicini C, Palazzolo L, Loberto N, Eberini I et al (2017) Role of GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J Neurochem 143:645–659CrossRefGoogle Scholar
  12. 12.
    Lipartiti M, Lazzaro A, Zanoni R, Mazzari S, Toffano G, Leon A (1991) Monosialoganglioside GM1 reduces NMDA neurotoxicity in neonatal rat brain. Exp Neurol 113:301–305CrossRefGoogle Scholar
  13. 13.
    Nakamura K, Wu G, Ledeen RW (1992) Protection of neuro-2a cells against calcium ionophore cytotoxicity by gangliosides. J Neurosci Res 31:245–253CrossRefGoogle Scholar
  14. 14.
    Bachis A, Rabin SJ, Del Fiacco M, Mocchetti I (2002) Ganglioside prevent excitotoxicity through activation of TrkB receptor. Neurotox Res 4:225–234CrossRefGoogle Scholar
  15. 15.
    Zakharova IO, Sokolova TV, Vlasova YA, Furaev VV, Rychkova MP, Avrova NF (2014) GM1 ganglioside activates ERK1/2 and Akt downstream of Trk tyrosine kinase and protects PC12 cell against hydrogen peroxide toxicity. Neurochem Res 39:2262–2275CrossRefGoogle Scholar
  16. 16.
    Schneider JS, Seyfried TN, Chiu HS, Kidd SK (2015) Intraventricular sialidase administration enhances GM1 ganglioside expression and is partially neuroprotective in a mouse model of Parkinson’s disease. PLoS One 10:12Google Scholar
  17. 17.
    Saulino MF, Schengrund CL (1993) Effects of specific gangliosides on the in vitro proliferation of MPTP-susceptible cells. J Neurochem 61:1277–1283CrossRefGoogle Scholar
  18. 18.
    De Girolamo LA, Hargreaves AJ, Billett EE (2001) Protection from MPTP-induced neurotoxicity in differentiating mouse N2a neuroblastoma cells. J Neurochem 76:650–660CrossRefGoogle Scholar
  19. 19.
    Nicotra A, Parvez SH (2002) Apoptotic molecules and MPTP-induced cell death. Neurotoxicol Teratol 24:599–605CrossRefGoogle Scholar
  20. 20.
    Meredith GE, Rademacher DJ (2011) MPTP mouse models of Parkinson’s disease: an update. J Park Dis 1:19–33Google Scholar
  21. 21.
    Wiegandt H, Bücking HW (1970) Carbohydrate components of extraneuronal gangliosides from bovine and human spleen, and bovine kidney. Eur J Biochem 15:287–292CrossRefGoogle Scholar
  22. 22.
    Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296:160–170CrossRefGoogle Scholar
  23. 23.
    Acquotti D, Cantu L, Ragg E, Sonnino S (1994) Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. Eur J Biochem 225:271–288CrossRefGoogle Scholar
  24. 24.
    Chiricozzi E, Niemer N, Aureli M, Magini A, Loberto N, Prinetti A, Bassi R, Polchi A et al (2014) Chaperone therapy for GM2 gangliosidosis: effects of pyrimethamine on β-hexosaminidase activity in Sandhoff fibroblasts. Mol Neurobiol 50:159–167CrossRefGoogle Scholar
  25. 25.
    Riboni L, Prinetti A, Bassi R, Caminiti A, Tettamanti G (1995) A mediator role of ceramide in the regulation of neuroblastoma Neuro2a cell differentiation. J Biol Chem 270:26868–26875CrossRefGoogle Scholar
  26. 26.
    Wood ER, Kuyper L, Petrov KG, Hunter RN, Harris PA, Lackey K (2004) Discovery and in vitro evaluation of potent TrkA kinase inhibitors: oxindole and aza-oxindoles. Bioorg Med Chem Lett 14:953–957CrossRefGoogle Scholar
  27. 27.
    Ragg EM, Galbusera V, Scafaroni A, Negri A, Tedeschi G, Consonni A, Sessa F, Duranti M (2006) Inibitory properties and solution structure of a potent Bowman-Birk protease inhibitor from lentil (Lens culinaris L) seeds. FEBS J 273:4024–2039CrossRefGoogle Scholar
  28. 28.
    Dell’Orco M, Milani P, Arrigoni L, Pansarasa O, Sardone V, Maffioli E, Polveraccio E, Bordoni M et al (2016) Hydrogen peroxide-mediated induction of SOD1 gene transcription is independent from Nrf2 in a cellular model of neurodegeneration. Biochim Biophys Acta 1859:315–323CrossRefGoogle Scholar
  29. 29.
    Coccetti P, Tripodi F, Tedeschi G, Nonnis S, Marin O, Fantinato S, Cirulli C, Vanoni M et al (2008) The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G1 to S transition in Saccharomyces cerevisiae. Cell Cycle 7:1–12CrossRefGoogle Scholar
  30. 30.
    Maffioli E, Schulte C, Nonnis S, Scalvini FG, Piazzoni C, Lenardi C, Negri A, Milani P et al (2018) Proteomic dissection of nanotopography-sensitive mechanotransductive signalling hubs that foster neuronal differentiation in PC12 cells. Front Cell Neurosci 11:417CrossRefGoogle Scholar
  31. 31.
    Chiricozzi E, Fernandez-Fernandez S, Nardicchi V, Almeida A, Bolaños JP, Goracci G (2010) Group IIA secretory phospholipase A2 (GIIA) mediates apoptotic death during NMDA receptor activation in rat primary cortical neurons. J Neurochem 112:1574–1583CrossRefGoogle Scholar
  32. 32.
    Kim HY, Jeon H, Kim H, Koo S, Kim S (2018) Sophora flavescens Aiton decreases MPP+-induced mitochondrial dysfunction in SH-SY5Y cells. Front Aging Neurosci 10:119CrossRefGoogle Scholar
  33. 33.
    Chiaretti S, Astro V, Chiricozzi E, de Curtis I (2016) Effects of the scaffold proteins liprin-α1, β1 and β2 on invasion by breast cancer cells. Biol Cell 108:65–75CrossRefGoogle Scholar
  34. 34.
    Aureli M, Bassi R, Prinetti A, Chiricozzi E, Pappalardi B, Chigorno V, Di Muzio N, Loberto N et al (2012) Ionizing radiation increase the activity of cell surface glycohydrolases and plasma membrane ceramide content. Glycoconj J 29:585–597CrossRefGoogle Scholar
  35. 35.
    Samarani M, Loberto N, Soldà G, Straniero L, Asselta R, Duga S, Lunghi G, Zucca FA et al (2018) A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB J 32:5685–5702CrossRefGoogle Scholar
  36. 36.
    Outeiro TF, Marques O, Kazantsev A (2008) Therapeutic role of sirtuins in neurodegenerative disease. Biochim Biophys Acta 1782:363–369CrossRefGoogle Scholar
  37. 37.
    Yang W, Sheng H, Wang H (2016) Targeting the SUMO pathway for neuroprotection in brain ischaemia. Stroke Vasc Neurol 1:101–107CrossRefGoogle Scholar
  38. 38.
    Bogorad AM, Lin KL, Marintchev A (2017) Novel mechanisms of eIF2B action and regulation by eIF2phosphorylation. Nucleic Acids Res 45:11962–11979CrossRefGoogle Scholar
  39. 39.
    Grande V, Manassero G, Vercelli A (2014) Neuroprotective and anti-inflammatory roles of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) inhibition in a mouse model of temporal lobe epilepsy. PLoS One 12:1–20Google Scholar
  40. 40.
    Vian J, Pereira C, Chavarria V, Köhler C, Stubbs B, Quevedo J, Kim SW, Carvalho AF et al (2017) The renin–angiotensin system: a possible new target for depression. BMC Med 15:144CrossRefGoogle Scholar
  41. 41.
    Priesnitz C, Becker T (2018) Pathways to balance mitochondrial translation and protein import. Genes Dev 32:1285–1296CrossRefGoogle Scholar
  42. 42.
    Bieri P, Greber BJ, Ban N (2018) High-resolution structures of mitochondrial ribosomes and their functional implications. Curr Opin Struct Biol 49:44–53CrossRefGoogle Scholar
  43. 43.
    Chen K, Ho TS, Lin G, Tan KL, Rasband MN, Bellen HJ (2016) Loss of frataxin activates the iron/sphingolipid/PDK1/Mef2 pathway in mammals. Elife 30:5Google Scholar
  44. 44.
    Almokhtar M, Wikvall K, Ubhayasekera SJKA, Bergquist J, Norlin M (2016) Motor neuron-like NSC-34 cells as a new model for the study of vitamin D metabolism in the brain. J Steroid Biochem Mol Biol 158:178–188CrossRefGoogle Scholar
  45. 45.
    Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, Harvey K, Deas E et al (2007) The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol 9:1243–1252CrossRefGoogle Scholar
  46. 46.
    Sandhoff R, Schulze H, Sandhoff K (2018) Ganglioside metabolism in health and disease. Prog Mol Biol Transl Sci 156:1–62CrossRefGoogle Scholar
  47. 47.
    Prinetti A, Chigorno V, Prioni S, Loberto N, Marano N, Tettamanti G, Sonnino S (2001) Changes in the lipid turnover, composition, and organization, as sphingolipid-enriched membrane domains, in rat cerebellar granule cells developing in vitro. J Biol Chem 276:21136–21145CrossRefGoogle Scholar
  48. 48.
    Prinetti A, Prioni S, Chiricozzi E, Schuchman EH, Chigorno V, Sonnino S (2011) Secondary alterations of sphingolipid metabolism in lysosomal storage diseases. Neurochem Res 36:1654–1668CrossRefGoogle Scholar
  49. 49.
    Chiricozzi E, Ciampa MG, Brasile G, Compostella F, Prinetti A, Nakayama H, Ekyalongo RC, Iwabuchi K et al (2015) Direct interaction, instrumental for signaling processes, between LacCer and Lyn in the lipid rafts of neutrophil-like cells. J Lipid Res 56:129–141CrossRefGoogle Scholar
  50. 50.
    Grassi S, Chiricozzi E, Mauri L, Sonnino S, Prinetti A (2018) Sphingolipids and neuronal degeneration in lysosomal storage disorders. J Neurochem.  https://doi.org/10.1007/s11064-018-2701-x
  51. 51.
    Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk proteins and regulates receptor function. Proc Natl Acad Sci 92:5087–5091CrossRefGoogle Scholar
  52. 52.
    Rabin SJ, Mocchetti I (1995) GM1 ganglioside activates the high-affinity nerve growth factor receptor TrkA. J Neurochem 65:347–354CrossRefGoogle Scholar
  53. 53.
    Rabin SJ, Bachis A, Mocchetti I (2002) Gangliosides activate Trk receptors by inducing the release of neurotrophin. J Biol Chem 51:49466–49472CrossRefGoogle Scholar
  54. 54.
    Da Silva JS, Hasegawa T, Miyagi T, Dotti CG, Abab-Rodriguez J (2005) Asymmetric membrane ganglioside sialidase activity specifies axonal fate. Nat Neurosci 8:606–615CrossRefGoogle Scholar
  55. 55.
    Facci L, Leon A, Tofffano G, Sonnino S, Ghidoni R, Tettamanti G (1984) Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1. J Neurochem 42:299–305CrossRefGoogle Scholar
  56. 56.
    Valperta R, Valsecchi M, Rocchetta F, Aureli M, Prioni S, Prinetti A, Chigorno V, Sonnino S (2007) Induction of axonal differentiation by silencing plasma membrane-associated sialidase Neu3 in neuroblastoma cells. J Neurochem 100:708–719CrossRefGoogle Scholar
  57. 57.
    Mutoh T, Hamano T, Yano S, Koga H, Yamamoto H, Furukawa K, Ledeen RW (2002) Stable transfection of GM1 synthase gene into GM1-deficient NG108-15 cells, CR-72 cells, rescues the responsiveness of Trk-neurotrophin receptor to its ligand, NGF. Neurochem Res 27:801–806CrossRefGoogle Scholar
  58. 58.
    Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642CrossRefGoogle Scholar
  59. 59.
    Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR, Light JE, Kolla V et al (2009) Trk receptor expression and inhibition in neuroblastoma. Clin Cancer Res 15:3244–3250CrossRefGoogle Scholar
  60. 60.
    Farooqui T, Franklin T, Pearl DK, Yates AJ (1997) Ganglioside GM1 enhances induction by nerve growth factor of a putative dimer of TrkA. J Neurochem 68:2348–2355CrossRefGoogle Scholar
  61. 61.
    Singleton DW, Lu CL, Collela R, Roisen FJ (2000) Promotion of neurite outgrowth by protein kinase inhibitors and ganglioside GM1 in neuroblastoma cells involved MAP kinase ERK1/2. Int J Dev Neurosci 18:797–805CrossRefGoogle Scholar
  62. 62.
    Duchemin AM, Ren Q, Mo L, Neff NH, Hadjiconstantinou M (2002) GM1 ganglioside induces phosphorylation and activation of Trk and Erk in brain. J Neurochem 81:696–707CrossRefGoogle Scholar
  63. 63.
    Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem 270:3074–3080CrossRefGoogle Scholar
  64. 64.
    Rodriguez JA, Piddini E, Hasegawa T, Miyagi T, Dotti CG (2001) Plasma membrane ganglioside sialidase regulates axonal growth and regeneration in hippocampal neurons in culture. J Neurosci 21:8387–8395CrossRefGoogle Scholar
  65. 65.
    Mutoh T, Tokuda A, Inokuchi J, Kuriyama M (1998) Glucosylceramide synthase inhibitor inhibits the action of nerve growth factor in PC12 cells. J Biol Chem 273:26001–26007CrossRefGoogle Scholar
  66. 66.
    Svennerholm L, Bostrom K, Fredman P, Mansson JE, Rosengren B, Rynmark BM (1989) Human brain gangliosides: developmental changes from early fetal stage to advanced age. BBA 1005:109–117Google Scholar
  67. 67.
    Svennerholm L, Bostrom K, Junbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63:1802–1811CrossRefGoogle Scholar
  68. 68.
    Hadaczek P, Wu G, Sharma N, Ciesielska A, Bankiewicz K, Davidow AL, Lu ZH, Forsayeth J et al (2015) GDNF signaling implemented by GM1 ganglioside; failure in Parkinson’s disease and GM1-deficient murine model. Exp Neurol 263:177–189CrossRefGoogle Scholar
  69. 69.
    Forsayeth J, Hadaczek P (2018) Ganglioside metabolism and Parkinson’s disease. Front Neurosci 12:45CrossRefGoogle Scholar
  70. 70.
    Scheneider JS (2018) Altered expression of genes involved in ganglioside biosynthesis in substantia nigra neurons in Parkinson’s disease. PLoS One 13:6Google Scholar
  71. 71.
    Schiumarini D, Loberto N, Mancini G, Bassi R, Giussani P, Chiricozzi E, Samarani M, Munari S et al (2017) Evidence for the involvement of lipid rafts and plasma membrane sphingolipid hydrolases in Pseudomonas aeruginosa infection of cystic fibrosis bronchial epithelial cells. Mediat Inflamm 103:445–456Google Scholar
  72. 72.
    Sonnino S, Chiricozzi E, Ciampa MG, Mauri L, Prinetti A, Toffano G, Aureli M (2017) Serum antibodies to glycans in peripheral neuropathies. Mol Neurobiol 54:1564–1567CrossRefGoogle Scholar
  73. 73.
    Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A (2018) Gangliosides in membrane organization. Prog Mol Biol Transl Sci 156:83–120CrossRefGoogle Scholar
  74. 74.
    Aureli M, Samarani M, Loberto N, Chiricozzi E, Mauri L, Grassi S, Schiumarini D, Prinetti A et al (2018) Neuronal membrane dynamics as fine regulator of sphingolipid composition. Glycoconj J 35:397–402CrossRefGoogle Scholar
  75. 75.
    Chiricozzi E, Loberto N, Schiumarini D, Samarani M, Mancini G, Tamanini A, Lippi G, Dechecchi MC et al (2018) Sphingolipids role in the regulation of inflammatory response: from leukocyte biology to bacterial infection. J Leukoc Biol 103:445–456CrossRefGoogle Scholar
  76. 76.
    Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, Stanley P, Hart G et al (2015) Symbol nomenclature for graphical representations of glycans. Glycobiology 25:1323–1324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medical Biotechnology and Translational MedicineUniversity of MilanSegrateItaly
  2. 2.Department of Veterinary MedicineUniversity of MilanMilanItaly
  3. 3.Fondazione UnimiMilanItaly

Personalised recommendations