Advertisement

Molecular Neurobiology

, Volume 56, Issue 10, pp 6856–6872 | Cite as

Overview of Impaired BDNF Signaling, Their Coupled Downstream Serine-Threonine Kinases and SNARE/SM Complex in the Neuromuscular Junction of the Amyotrophic Lateral Sclerosis Model SOD1-G93A Mice

  • Laia Just-Borràs
  • Erica Hurtado
  • Víctor Cilleros-Mañé
  • Olivier Biondi
  • Frédéric Charbonnier
  • Marta Tomàs
  • Neus Garcia
  • Maria A. LanuzaEmail author
  • Josep TomàsEmail author
Article

Abstract

Amyotrophic lateral sclerosis (ALS) is a chronic neurodegenerative disease characterized by progressive motor weakness. It is accepted that it is caused by motoneuron degeneration leading to a decrease in muscle stimulation. However, ALS is being redefined as a distal axonopathy, in that neuromuscular junction dysfunction precedes and may even influence motoneuron loss. In this synapse, several metabotropic receptor-mediated signaling pathways converge on effector kinases that phosphorylate targets that are crucial for synaptic stability and neurotransmission quality. We have previously shown that, in physiological conditions, nerve-induced muscle contraction regulates the brain-derived neurotrophic factor/tropomyosin-related kinase B (BDNF/TrkB) signaling to retrogradely modulate presynaptic protein kinases PKC and PKA, which are directly involved in the modulation of acetylcholine release. In ALS patients, the alteration of this signaling may significantly contribute to a motor impairment. Here, we investigate whether BDNF/TrkB signaling, the downstream PKC (cPKCβI, cPKCα, and nPKCε isoforms), and PKA (regulatory and catalytic subunits) and some SNARE/SM exocytotic machinery proteins (Munc18-1 and SNAP-25) are altered in the skeletal muscle of pre- and symptomatic SOD1-G93A mice. We found that this pathway is strongly affected in symptomatic ALS mice muscles including an unbalance between (I) BDNF and TrkB isoforms, (II) PKC isoforms and PKA subunits, and (III) Munc18-1 and SNAP-25 phosphorylation ratios. Changes in TrkB.T1 and cPKCβI are precociously observed in presymptomatic mice. Altogether, several of these molecular alterations can be partly associated with the known fast-to-slow motor unit transition during the disease process but others can be related with the initial disease pathogenesis.

Keywords

ALS TrkB PKC PKA BDNF Munc18-1 SNAP-25 Skeletal muscle NMJ 

Abbreviations

ALS

Amyotrophic lateral sclerosis

BDNF

Brain derived neurotrophic factor

MN

Motoneuron

NMJ

Neuromuscular junction

NT4

Neurotrophin-4

p75NTR

p75 neurotrophin receptor

PDK1

Phosphoinositide-dependent kinase-1

PKA

Protein kinase A

PKC

Protein kinase C

PLCγ

Gamma phospholipase C

SM

Sec1/Munc18-like

SNAP-25

Synaptosomal-associated protein 25

SNARE

Soluble NSF Attachment Protein (SNAP) receptor

TrkB

Tropomyosin-related kinase B receptor

WT

Wild type

Notes

Acknowledgements

This work has been possible with the financial support of Ministerio de Economía, Industria y Competitividad, the Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF) (SAF2015-67143-P; PGC2018-097347-B-I00 grant submitted), the support of the Universitat Rovira i Virgili (URV) (2014PFR-URV-B2-83 and 2017PFR-URV-B2-85) and the Catalan Government (2014SGR344 and 2017SGR704). V.C. has been supported by the Ministerio de Economía y Competitividad (MINECO) under the framework of the Sistema Nacional de Garantía Juvenil, the European Social Fund (ESF) and the Iniciativa de Empleo Juvenil (IEJ).

Authors’ Contributions

LJ, EH, VC, MT: LJ, EH. LJ is responsible for data collection. LJ, EH, VC, OB, FC, JT, MAL, and NG are responsible for data interpretation LJ, EH, VC, JT, MAL, and NG are responsible for literature search. LJ, EH, VC, JT, MAL, NG. JT, MAL, and NG are responsible for conception and design. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no conflict of interest.

Ethics Approval and Consent to Participate

The mice were cared for in accordance with the guidelines of the European Community’s Council Directive of 24 November 1986 (86/609/EEC) for the humane treatment of laboratory animals. All experiments on animals have been reviewed and approved by the Animal Research Committee of the Universitat Rovira i Virgili (Reference number: 0233). Also, animal handling and experimentation were performed in line with approved Institutional Animal Care and Use Committe protocols at the University of Paris Descartes and followed the national authority (Ministère de la Recherche et de la Technologie, France) guidelines for the detention, use and the ethical treatment of laboratory animals based on European Union Directive 2010/63/EU.

References

  1. 1.
    Kiernan MC, Vucic S, Cheah BC et al (2011) Amyotrophic lateral sclerosis. Lancet 377:942–955.  https://doi.org/10.1016/S0140-6736(10)61156-7 CrossRefGoogle Scholar
  2. 2.
    NIH NI of ND and S (2017) Amyotrophic lateral sclerosis, pp. 1–24Google Scholar
  3. 3.
    Boillée S, Vande-Velde C, Cleveland DW (2006) ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 52:39–59.  https://doi.org/10.1016/j.neuron.2006.09.018 CrossRefGoogle Scholar
  4. 4.
    Pratt AJ, Getzoff ED, Perry JJP (2012) Amyotrophic lateral sclerosis: update and new developments. Degener Neurol Neuromuscul Dis 2012:1–14.  https://doi.org/10.2147/DNND.S19803 Google Scholar
  5. 5.
    Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362:59–62.  https://doi.org/10.1038/362059a0 CrossRefGoogle Scholar
  6. 6.
    Zheng C, Nennesmo I, Fadeel B, Henter J-I (2004) Vascular endothelial growth factor prolongs survival in a transgenic mouse model of ALS. Ann Neurol 56:564–567.  https://doi.org/10.1002/ana.20223 CrossRefGoogle Scholar
  7. 7.
    Moloney EB, de Winter F, Verhaagen J, et al (2014) ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. 8:1–18.  https://doi.org/10.3389/fnins.2014.00252
  8. 8.
    Fischer LR, Culver DG, Tennant P et al (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185:232–240.  https://doi.org/10.1016/j.expneurol.2003.10.004 CrossRefGoogle Scholar
  9. 9.
    Cleveland DW, Williamson TL (1999) Slowing of axonal transport is a very early event in the toxicity ofALS-linked SOD1 mutants to motor neurons. Nat Neurosci 2:50–56.  https://doi.org/10.1038/4553 CrossRefGoogle Scholar
  10. 10.
    Zhang B, Tu P, Abtahian F et al (1997) Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J Cell Biol 139:1307–1315CrossRefGoogle Scholar
  11. 11.
    Lu B (2003) BDNF and activity-dependent synaptic modulation. Learn Mem 10:86–98CrossRefGoogle Scholar
  12. 12.
    Nadal L, Garcia N, Hurtado E et al (2017) Presynaptic muscarinic acetylcholine receptors and TrkB receptor cooperate in the elimination of redundant motor nerve terminals during development. Front Aging Neurosci 9:1–7.  https://doi.org/10.3389/fnagi.2017.00024 CrossRefGoogle Scholar
  13. 13.
    Nadal L, Garcia N, Hurtado E et al (2016) Presynaptic muscarinic acetylcholine autoreceptors (M1, M2 and M4 subtypes), adenosine receptors (A1 and A2A ) and tropomyosin-related kinase B receptor (TrkB) modulate the developmental synapse elimination process at the neuromuscular junction. Mol Brain 9:1–19.  https://doi.org/10.1186/s13041-016-0248-9 CrossRefGoogle Scholar
  14. 14.
    Hurtado E, Cilleros V, Nadal L et al (2017) Muscle contraction regulates BDNF/TrkB signaling to modulate synaptic function through presynaptic cPKCα and cPKCβI. Front Mol Neurosci 10:1–22.  https://doi.org/10.3389/fnmol2017.00147 Google Scholar
  15. 15.
    Mantilla CB, Stowe JM, Sieck DC et al (2014) TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J Appl Physiol 117:910–920.  https://doi.org/10.1152/japplphysiol.01386.2013 CrossRefGoogle Scholar
  16. 16.
    Ikeda K, Klinkosz B, Greene T et al (1995) Effects of brain-derived neurotrophic factor on motor dysfunction in wobbler mouse motor neuron disease. Ann Neurol 37:505–511.  https://doi.org/10.1093/jnen/61.2.142 CrossRefGoogle Scholar
  17. 17.
    Ikeda O, Murakami M, Ino H et al (2002) Effects of brain-derived neurotrophic factor (BDNF) on compression-induced spinal cord injury: BDNF attenuates down-regulation of superoxide dismutase expression and promotes up-regulation of myelin basic protein expression. J Neuropathol Exp Neurol 61:142–153CrossRefGoogle Scholar
  18. 18.
    Kobayashi E, Nakano H, Morimoto M, Tamaoki T (1989) Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun 159:548–553.  https://doi.org/10.1016/0006-291X(89)90028-4 CrossRefGoogle Scholar
  19. 19.
    Haase G, Kennel P, Pettmann B et al (1997) Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat Med 3:429–436CrossRefGoogle Scholar
  20. 20.
    Turner BJ, Cheah IK, Macfarlane KJ et al (2003) Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice. J Neurochem 87:752–763.  https://doi.org/10.1046/j.1471-4159.2003.02053.x CrossRefGoogle Scholar
  21. 21.
    Zhai J, Zhou W, Li J et al (2011) The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease. Hum Mol Genet 20:4116–4131.  https://doi.org/10.1093/hmg/ddr335 CrossRefGoogle Scholar
  22. 22.
    Yanpallewar SU, Barrick CA, Buckley H et al (2012) Deletion of the BDNF truncated receptor TrkB.T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS One 7:1–7.  https://doi.org/10.1371/journal.pone.0039946 CrossRefGoogle Scholar
  23. 23.
    Mutoh T, Sobue G, Hamano T et al (2000) Decreased phosphorylation levels of TrkB Neurotrophin receptor in the spinal cords from patients with amyotrophic lateral sclerosis. Neurochem Res 25:239–245.  https://doi.org/10.1023/A:1007575504321 CrossRefGoogle Scholar
  24. 24.
    Corse AM, Bilak MM, Bilak SR et al (1999) Preclinical testing of neuroprotective neurotrophic factors in a model of chronic motor neuron degeneration. Neurobiol Dis 6:335–346.  https://doi.org/10.1006/nbdi.1999.0253 CrossRefGoogle Scholar
  25. 25.
    Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 10:209–219.  https://doi.org/10.1038/nrd3366 CrossRefGoogle Scholar
  26. 26.
    Gould TW, Oppenheim RW (2011) Motor neuron trophic factors: therapeutic use in ALS? Brain Res Rev 67:1–39.  https://doi.org/10.1016/j.brainresrev.2010.10.003 CrossRefGoogle Scholar
  27. 27.
    Nishio T, Sunohara N, Furukawa S (1998) Neutrophin switching in spinal motoneurons of amyotrophic lateral sclerosis. Neuroreport 9:1661–1665CrossRefGoogle Scholar
  28. 28.
    Besalduch N, Tomàs M, Santafé MM et al (2010) Synaptic activity-related classical protein kinase C isoform localization in the adult rat neuromuscular synapse. J Comp Neurol 518:211–228.  https://doi.org/10.1002/cne.22220 CrossRefGoogle Scholar
  29. 29.
    Obis T, Besalduch N, Hurtado E et al (2015) The novel protein kinase C epsilon isoform at the adult neuromuscular synapse: location, regulation by synaptic activity-dependent muscle contraction through TrkB signaling and coupling to ACh release. Mol Brain 8:1–16.  https://doi.org/10.1186/s13041-015-0098-x CrossRefGoogle Scholar
  30. 30.
    Simó A, Just-Borràs L, Cilleros-Mañé V et al (2018) BDNF-TrkB signaling coupled to nPKCε and cPKCβI modulate the phosphorylation of the Exocytotic protein Munc18-1 during synaptic activity at the neuromuscular junction. Front Mol Neurosci 11:207–227.  https://doi.org/10.3389/fnmol.2018.00207 CrossRefGoogle Scholar
  31. 31.
    Nijssen J, Comley LH, Hedlund E (2017) Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 132:1–23.  https://doi.org/10.1007/s00401-017-1708-8 Google Scholar
  32. 32.
    Deforges S, Branchu J, Biondi O et al (2009) Motoneuron survival is promoted by specific exercise in a mouse model of amyotrophic lateral sclerosis. J Physiol 587:3561–3571.  https://doi.org/10.1113/jphysiol.2009.169748 CrossRefGoogle Scholar
  33. 33.
    Hegedus J, Putman CT, Tyreman N, Gordon T (2008) Preferential motor unit loss in the SOD1 G93A transgenic mouse model of amyotrophic lateral sclerosis. J Physiol 586:3337–3351.  https://doi.org/10.1113/jphysiol.2007.149286 CrossRefGoogle Scholar
  34. 34.
    Marchetto MCN, Muotri AR, Mu Y, Smith AM, Cezar GG, Gage FH (2008) Non-cell-autonomous effect of human SOD1G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3:649–657.  https://doi.org/10.1016/j.stem.2008.10.001 CrossRefGoogle Scholar
  35. 35.
    Tjust AE, Brannstrom T, Pedrosa Domellof F (2012) Unaffected motor endplate occupancy in eye muscles of ALS G93A mouse model. Front Biosci (Schol Ed) 4:1547–1555Google Scholar
  36. 36.
    Harandi VM, Gaied ARN, Brännström T et al (2016) Unchanged neurotrophic factors and their receptors correlate with sparing in extraocular muscles in amyotrophic lateral sclerosis. Investig Opthalmology Vis Sci 57:6831–6842.  https://doi.org/10.1167/iovs.16-20074 CrossRefGoogle Scholar
  37. 37.
    Gurney ME, Pu H, Chiu AY et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science (80- ) 264:1772–1775CrossRefGoogle Scholar
  38. 38.
    Tu PH, Raju P, Robinson KA et al (1996) Transgenic mice carrying a human mutant superoxide dismutase transgene develop neuronal cytoskeletal pathology resembling human amyotrophic lateral sclerosis lesions. Proc Natl Acad Sci U S A 93:315531–315560CrossRefGoogle Scholar
  39. 39.
    McCombe PA, Henderson RD (2010) Effects of gender in amyotrophic lateral sclerosis. Gend Med 7:557–570.  https://doi.org/10.1016/j.genm.2010.11.010 CrossRefGoogle Scholar
  40. 40.
    Obis T, Hurtado E, Nadal L et al (2015) The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction. Mol Brain 8:1–16.  https://doi.org/10.1186/s13041-015-0171-5 CrossRefGoogle Scholar
  41. 41.
    Hurtado E, Cilleros V, Just L et al (2017) Synaptic activity and muscle contraction increases PDK1 and PKCβI phosphorylation in the presynaptic membrane of the neuromuscular junction. Front Mol Neurosci 10:1–13.  https://doi.org/10.3389/fnmol.2017.00270 Google Scholar
  42. 42.
    Aldridge GM, Podrebarac DM, Greenough WT, Weiler IJ (2008) The use of total protein stains as loading controls: An alternative to high-abundance single-protein controls in semi-quantitative immunoblotting. J Neurosci Methods 172:250–254.  https://doi.org/10.1016/j.jneumeth.2008.05.003 CrossRefGoogle Scholar
  43. 43.
    Zheng Z, Sabirzhanov B, Keifer J (2010) Oligomeric amyloid-inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J Biol Chem 285:34708–34717.  https://doi.org/10.1074/jbc.M110.150821 CrossRefGoogle Scholar
  44. 44.
    Middlemas DS, Meisenhelder J, Hunter T (1994) Identification of TrkB autophosphorylation sites and evidence that phospholipase C-gamma1 is a substrate of the TrkB receptor. J Biol Chem 269:5458–5466Google Scholar
  45. 45.
    Eide FF, Vining ER, Eide BL et al (1996) Naturally occurring truncated trkB receptors have dominant inhibitory effects on brain-derived neurotrophic factor signaling. J Neurosci 16:3123–3129.  https://doi.org/10.1523/JNEUROSCI.16-10-03123.1996 CrossRefGoogle Scholar
  46. 46.
    Santafé MM, Garcia N, Tomàs M et al (2014) The interaction between tropomyosin-related kinase B receptors and serine kinases modulates acetylcholine release in adult neuromuscular junctions. Neurosci Lett 561:171–175.  https://doi.org/10.1016/j.neulet.2013.12.073 CrossRefGoogle Scholar
  47. 47.
    Song W, Jin XA (2015) Brain-derived neurotrophic factor inhibits neuromuscular junction maturation in a cAMP-PKA-dependent way. Neurosci Lett 591:8–12.  https://doi.org/10.1016/j.neulet.2015.02.019 CrossRefGoogle Scholar
  48. 48.
    Dulubova I, Sugita S, Hill S et al (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J 18:4372–4382.  https://doi.org/10.1093/emboj/18.16.4372 CrossRefGoogle Scholar
  49. 49.
    Misura KM, Scheller RH, Weis WI (2000) Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–362.  https://doi.org/10.1038/35006120 CrossRefGoogle Scholar
  50. 50.
    Verhage M, Maia AS, Plomp JJ et al (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287:864–869.  https://doi.org/10.1126/science.287.5454.864 CrossRefGoogle Scholar
  51. 51.
    Yang B, Steegmaier M, Gonzalez LC, Scheller RH (2000) nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 148:247–252CrossRefGoogle Scholar
  52. 52.
    Liu J, Ernst SA, Gladycheva SE et al (2004) Fluorescence resonance energy transfer reports properties of syntaxin1a interaction with Munc18-1 in vivo. J Biol Chem 279:55924–55936.  https://doi.org/10.1074/jbc.M410024200 CrossRefGoogle Scholar
  53. 53.
    Hata Y, Slaughter CA, Südhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–351.  https://doi.org/10.1038/366347a0 CrossRefGoogle Scholar
  54. 54.
    Medine CN, Rickman C, Chamberlain LH, Duncan RR (2007) Munc18-1 prevents the formation of ectopic SNARE complexes in living cells. J Cell Sci 120:4407–4415.  https://doi.org/10.1242/jcs.020230 CrossRefGoogle Scholar
  55. 55.
    de Vries KJ, Geijtenbeek A, Brian EC et al (2000) Dynamics of munc18-1 phosphorylation/dephosphorylation in rat brain nerve terminals. Eur J Neurosci 12:385–390.  https://doi.org/10.1046/j.1460-9568.2000.00931.x CrossRefGoogle Scholar
  56. 56.
    Dulubova I, Khvotchev M, Liu S et al (2007) Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 104:2697–2702.  https://doi.org/10.1073/pnas.0611318104 CrossRefGoogle Scholar
  57. 57.
    Fujita Y, Sasaki T, Fukui K et al (1996) Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C: Its implication in regulating the interaction of Munc-18/n-Sec1/rbSec1 with syntaxin. J Biol Chem 271:7265–7268CrossRefGoogle Scholar
  58. 58.
    Genc O, Kochubey O, Toonen RF et al (2014) Munc18-1 is a dynamically regulated PKC target during short-term enhancement of transmitter release. Elife 3:1715–1734.  https://doi.org/10.7554/eLife.01715 CrossRefGoogle Scholar
  59. 59.
    Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477.  https://doi.org/10.1126/science.1161748 CrossRefGoogle Scholar
  60. 60.
    Leenders AGM, Sheng Z-H (2005) Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacol Ther 105:69–84.  https://doi.org/10.1016/j.pharmthera.2004.10.012 CrossRefGoogle Scholar
  61. 61.
    Nagy G, Matti U, Nehring RB et al (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J Neurosci 22:9278–9286.  https://doi.org/10.1523/JNEUROSCI.22-21-09278.2002 CrossRefGoogle Scholar
  62. 62.
    Dorsey SG, Lovering RM, Renn CL et al (2011) Genetic deletion of trkB.T1 increases neuromuscular function. Am J Physiol - Cell Physiol 302:141–153.  https://doi.org/10.1152/ajpcell.00469.2010 CrossRefGoogle Scholar
  63. 63.
    Küst BM, Copray JCVM, Brouwer N et al (2002) Elevated levels of Neurotrophins in human biceps Brachii tissue of amyotrophic lateral sclerosis. Exp Neurol 177:419–427.  https://doi.org/10.1006/exnr.2002.8011 CrossRefGoogle Scholar
  64. 64.
    Hempstead BL (2002) The many faces of p75NTR. Curr Opin Neurobiol 12:260–267.  https://doi.org/10.1016/S0959-4388(02)00321-5 CrossRefGoogle Scholar
  65. 65.
    Peng HB, Yang J-F, Dai Z et al (2003) Differential effects of neurotrophins and schwann cell-derived signals on neuronal survival/growth and synaptogenesis. J Neurosci 23:5050–5060.  https://doi.org/10.1523/JNEUROSCI.23-12-05050.2003 CrossRefGoogle Scholar
  66. 66.
    Mantilla CB, Gransee HM, Zhan W-Z, Sieck GC (2013) Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp Neurol 247:101–109.  https://doi.org/10.1016/j.expneurol.2013.04.002 CrossRefGoogle Scholar
  67. 67.
    Ochs G, Penn RD, York M et al (2000) A phase I/II trial of recombinant methionyl human brain derived neurotrophic factor administered by intrathecal infusion to patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:201–206CrossRefGoogle Scholar
  68. 68.
    Beck M, Flachenecker P, Magnus T et al (2005) Autonomic dysfunction in ALS: a preliminary study on the effects of intrathecal BDNF. Amyotroph Lateral Scler Other Motor Neuron Disord 6:100–103.  https://doi.org/10.1080/14660820510028412 CrossRefGoogle Scholar
  69. 69.
    Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280.  https://doi.org/10.1016/S0959-4388(00)00208-7 CrossRefGoogle Scholar
  70. 70.
    Garcia N, Priego M, Obis T et al (2013) Adenosine A1 and A2A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction. Eur J Neurosci 38:2229–2241.  https://doi.org/10.1111/ejn.12220 CrossRefGoogle Scholar
  71. 71.
    Tomàs J, Garcia N, Lanuza MA et al (2017) Presynaptic membrane receptors modulate ACh release, axonal competition and synapse elimination during neuromuscular junction development. Front Mol Neurosci 10:1–12.  https://doi.org/10.3389/FNMOL.2017.00132 Google Scholar
  72. 72.
    Felipo V, Miñana MD, Grisolía S (1993) Inhibitors of protein kinase C prevent the toxicity of glutamate in primary neuronal cultures. Brain Res 604:192–196.  https://doi.org/10.1016/0006-8993(93)90368-W CrossRefGoogle Scholar
  73. 73.
    Krieger C, R a L, Pelech SL, C a S (1996) Amyotrophic lateral sclerosis: the involvement of intracellular Ca2+ and protein kinase C. Trends Pharmacol Sci 17:114–120.  https://doi.org/10.1016/0165-6147(96)10004-3 CrossRefGoogle Scholar
  74. 74.
    Mondola P, Damiano S, Sasso A, Santillo M (2016) The Cu, Zn superoxide dismutase: not only a dismutase enzyme. Front Physiol 7:1–8.  https://doi.org/10.3389/fphys.2016.00594 CrossRefGoogle Scholar
  75. 75.
    Nagao M, Kato S, Oda M, Hirai S (1998) Decrease of protein kinase C in the spinal motor neurons of amyotrophic lateral sclerosis. Acta Neuropathol 96:52–56.  https://doi.org/10.1007/s004010050859 CrossRefGoogle Scholar
  76. 76.
    Amieux PS, Cummings DE, Motamed K et al (1997) Compensatory regulation of RIalpha protein levels in protein kinase a mutant mice. J Biol Chem 272:3993–3998CrossRefGoogle Scholar
  77. 77.
    Brandon EP, Idzerda RL, McKnight GS (1997) PKA isoforms, neural pathways, and behaviour: making the connection. Curr Opin Neurobiol 7:397–403.  https://doi.org/10.1016/S0959-4388(97)80069-4 CrossRefGoogle Scholar
  78. 78.
    Hu J-H, Zhang H, Wagey R et al (2003) Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem 85:432–442.  https://doi.org/10.1046/j.1471-4159.2003.01670.x CrossRefGoogle Scholar
  79. 79.
    Hu JH, Chernoff K, Pelech S, Krieger C (2003) Protein kinase and protein phosphatase expression in the central nervous system of G93A mSOD over-expressing mice. J Neurochem 85:422–431.  https://doi.org/10.1046/j.1471-4159.2003.01669.x CrossRefGoogle Scholar
  80. 80.
    Plomp JJ, Vergouwe MN, Van den Maagdenberg AM et al (2000) Abnormal transmitter release at neuromuscular junctions of mice carrying the tottering alpha1A Ca2+ channel mutation. Brain 123:463–471.  https://doi.org/10.1093/brain/123.3.463 CrossRefGoogle Scholar
  81. 81.
    Eisen A (2001) Clinical electrophysiology of the upper and lower motor neuron in amyotrophic lateral sclerosis. Semin Neurol 21:141–154.  https://doi.org/10.1055/s-2001-15261 CrossRefGoogle Scholar
  82. 82.
    Rocha MC, Pousinha PA, Correia AM et al (2013) Early changes of neuromuscular transmission in the SOD1(G93A) mice model of ALS start long before motor symptoms onset. PLoS One 8:1–11.  https://doi.org/10.1371/journal.pone.0073846 CrossRefGoogle Scholar
  83. 83.
    Wood SJ, Slater CR (1997) The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast- and slow-twitch muscles. J Physiol 500:165–176CrossRefGoogle Scholar
  84. 84.
    Dupuis L, Pradat P-F, Ludolph AC, Loeffler J-P (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10:75–82.  https://doi.org/10.1016/S1474-4422(10)70224-6 CrossRefGoogle Scholar
  85. 85.
    Dupuis L, Gonzalez De Aguilar JL, Oudart H et al (2004) Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener Dis 1:245–254.  https://doi.org/10.1159/000085063 CrossRefGoogle Scholar
  86. 86.
    Palamiuc L, Schlagowski A, Ngo ST et al (2015) A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 7:526–546.  https://doi.org/10.15252/emmm.201404433 CrossRefGoogle Scholar
  87. 87.
    Gertler RA, Robbins N (1978) Differences in neuromuscular transmission in red and white muscles. Brain Res 142:160–164.  https://doi.org/10.1016/0006-8993(78)90186-5 CrossRefGoogle Scholar
  88. 88.
    Martineau É, Di Polo A, Vande Velde C, Robitaille R (2018) Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. Elife 7:1–19.  https://doi.org/10.7554/eLife.41973 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la SalutUniversitat Rovira i VirgiliReusSpain
  2. 2.INSERM UMRS 1124 and Université Paris DescartesParis Cedex 06France

Personalised recommendations