Advertisement

Spike-Related Electrophysiological Identification of Cultured Hippocampal Excitatory and Inhibitory Neurons

  • Cosimo Prestigio
  • Daniele Ferrante
  • Pierluigi Valente
  • Silvia Casagrande
  • Ennio Albanesi
  • Yuchio Yanagawa
  • Fabio Benfenati
  • Pietro BaldelliEmail author
Article

Abstract

Cultured hippocampal neurons represent the most widely used experimental substrate for in vitro electrophysiological studies. Nevertheless, in most cases, the nature of neuron under study is not identified as excitatory or inhibitory, or even worse, recorded neurons are considered as excitatory because of the paucity of GABAergic interneurons. Thus, the definition of reliable criteria able to guarantee an unequivocal identification of excitatory and inhibitory cultured hippocampal neurons is an unmet need. To reach this goal, we compared the electrophysiological properties and the localization and size of the axon initial segment (AIS) of cultured hippocampal neurons, taking advantage from GAD67-GFP knock-in mice, which expressing green fluorescent protein (GFP) in gamma-aminobutyric acid (GABA)–containing cells, allowed to unambiguously determine the precise nature of the neuron under study. Our results demonstrate that the passive electrophysiological properties, the localization and size of the AIS, and the shape and frequency of the action potential (AP) are not reliable to unequivocally identify neurons as excitatory or inhibitory. The only parameter, related to the shape of the single AP, showing minimal overlap between the sample-point distributions of the two neuronal subpopulations, was the AP half-width. However, the estimation of the AP failure ratio evoked by a short train of high-current steps applied at increasing frequency (40–140 Hz) resulted to be indisputably the safer and faster way to identify the excitatory or inhibitory nature of an unknown neuron. Our findings provide a precise framework for further electrophysiological investigations of in vitro hippocampal neurons.

Keywords

Excitatory neurons Inhibitory neurons Action potential Firing frequency Half-width Axonal initial segment 

Notes

Funding Information

This study was supported by research grants from the Compagnia di San Paolo Torino (ID ROL 20612 and 9344); Ministero della Salute Ricerca Finalizzata (GR-2016-02363972); EU Era-Net Neuron 2017 “Snaropathies” and ITN “ECMED” (Grant agreement n. 642881).

Compliance with Ethical Standards

All experiments were performed in accordance with the guidelines established by the European Communities Council (Directive 2010/63/EU of September 22, 2010) and were approved by the Italian Ministry of Health.

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Wiltgen BJ, Brown RA, Talton LE, Silva AJ (2004) New circuits for old memories: the role of the neocortex in consolidation. Neuron 44:101–108.  https://doi.org/10.1016/j.neuron.2004.09.015 CrossRefPubMedGoogle Scholar
  2. 2.
    Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415.  https://doi.org/10.1038/nprot.2006.356 CrossRefPubMedGoogle Scholar
  3. 3.
    Beaudoin GM 3rd, Lee SH, Singh D, Yuan Y, Ng YG, Reichardt LF, Arikkath J (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7:1741–1754.  https://doi.org/10.1038/nprot.2012.099 CrossRefPubMedGoogle Scholar
  4. 4.
    Tóth K, McBain CJ (2000) Target-specific expression of pre- and postsynaptic mechanisms. J Physiol 525:41–51.  https://doi.org/10.1111/j.1469-7793.2000.00041.x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79.  https://doi.org/10.1002/cne.10905 CrossRefPubMedGoogle Scholar
  6. 6.
    Sahara S, Yanagawa Y, O'Leary DD, Stevens CF (2012) The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci 3:4755–4761.  https://doi.org/10.1523/JNEUROSCI.6412-11.2012 CrossRefGoogle Scholar
  7. 7.
    Ono M, Yanagawa Y, Koyano K (2005) GABAergic neurons in inferior colliculus of the GAD67-GFP knock-in mouse: electrophysiological and morphological properties. Neurosci Res 51:475–492.  https://doi.org/10.1016/j.neures.2004.12.019 CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki N, Bekkers JM (2010) Distinctive classes of GABAergic interneurons provide layer-specific phasic inhibition in the anterior piriform cortex. Cereb Cortex 20:2971–8420.  https://doi.org/10.1093/cercor/bhq046 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suzuki N, Bekkers JM (2010) Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol 518:1670–1687.  https://doi.org/10.1002/cne.22295 CrossRefPubMedGoogle Scholar
  10. 10.
    Valente P, Orlando M, Raimondi A, Benfenati F, Baldelli P (2016) Fine tuning of synaptic plasticity and filtering by GABA released from hippocampal autaptic granule cells. Cereb Cortex 26:1149–1167.  https://doi.org/10.1093/cercor/bhu301 CrossRefPubMedGoogle Scholar
  11. 11.
    Safiulina VF, Fattorini G, Conti F, Cherubini E (2006) GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J Neurosci 26:597–608.  https://doi.org/10.1523/JNEUROSCI.4493-05.2006 CrossRefPubMedGoogle Scholar
  12. 12.
    Gutiérrez R (2009) The dual glutamatergic/GABAergic phenotype of hippocampal granule cells. Trends Neurosci 28:297–303.  https://doi.org/10.1016/j.tins.2005.04.005 CrossRefGoogle Scholar
  13. 13.
    Gutiérrez R, Romo-Parra H, Maqueda J, Vivar C, Ramìrez M, Morales MA, Lamas M (2003) Plasticity of the GABAergic phenotype of the glutamatergic granule cells of the rat dentate gyrus. J Neurosci 23:5594–5598.  https://doi.org/10.1523/JNEUROSCI.23-13-05594.2003 CrossRefPubMedGoogle Scholar
  14. 14.
    Lavado A, Lagutin OV, Chow LML, Baker SJ, Oliver G (2010) Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biol 8:e1000460.  https://doi.org/10.1371/journal.pbio.1000460 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Acuna-Goycolea C, Tamamaki N, Yanagawa Y, Obata K, van den Pol AN (2005) Mechanisms of neuropeptide Y, peptide YY, and pancreatic polypeptide inhibition of identified green fluorescent protein-expressing GABA neurons in the hypothalamic neuroendocrine arcuate nucleus. J Neurosci 25:7406–7419.  https://doi.org/10.1523/JNEUROSCI.1008-05.2005 CrossRefPubMedGoogle Scholar
  16. 16.
    Brown RE, McKenna JT, Winston S, Basheer R, Yanagawa Y, Thakkar MM, McCarley RW (2008) Characterization of GABAergic neurons in rapid-eye-movement sleep controlling regions of the brainstem reticular formation in GAD67-green fluorescent protein knock-in mice. Eur J Neurosci 27:352–363.  https://doi.org/10.1111/j.1460-9568.2008.06024.x CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ (2017) Hippocampal GABAergic inhibitory interneurons. Physiol Rev 97:1619–1747.  https://doi.org/10.1152/physrev.00007.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Milior G, Di Castro MA, Pepe’ Sciarria L, Garofalo S, Branchi I, Ragozzino D, Limatola C, Maggi L (2016) Electrophysiological properties of CA1 pyramidal neurons along the longitudinal axis of the mouse hippocampus. Sci Rep 6:38242.  https://doi.org/10.1038/srep38242 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Pedroni A, Minh D, Mallamaci A, Cherubini E (2014) Electrophysiological characterization of granule cells in the dentate gyrus immediately after birth. Front Cell Neurosci 8:44.  https://doi.org/10.3389/fncel.2014.00044 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and propagation in rat neocortical pyramidal neurons. J Physiol 505:617–632CrossRefGoogle Scholar
  21. 21.
    Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26:1854–1863.  https://doi.org/10.1523/JNEUROSCI.4812-05.2006 CrossRefPubMedGoogle Scholar
  22. 22.
    Shu Y, Yu Y, Yang J, McCormick DA (2007) Selective control of cortical axonal spikes by a slowly inactivating K+ current. Proc Natl Acad Sci U S A 104:11453–11458.  https://doi.org/10.1073/pnas.0702041104 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kole MH, Stuart GJ (2008) Is action potential threshold lowest in the axon? Nat Neurosci 11:1253–1255.  https://doi.org/10.1038/nn.2203 CrossRefPubMedGoogle Scholar
  24. 24.
    Yu Y, Shu Y, McCormick DA (2008) Cortical action potential backpropagation explains spike threshold variability and rapid-onset kinetics. J Neurosci 28:7260–7272.  https://doi.org/10.1523/JNEUROSCI.1613-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    McCormick DA, Shu Y, Yu Y (2007) Neurophysiology: Hodgkin and Huxley model — still standing? Nature 445:E1–E2.  https://doi.org/10.1038/nature05523 CrossRefPubMedGoogle Scholar
  26. 26.
    Naundorf B, Wolf F, Volgushev M (2006) Unique features of action potential initiation in cortical neurons. Nature 440:1060–1063.  https://doi.org/10.1038/nature04610 CrossRefPubMedGoogle Scholar
  27. 27.
    Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A, Fache MP, Debanne D, Dargent B (2003) A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300:2091–2094.  https://doi.org/10.1126/science.1085167 CrossRefPubMedGoogle Scholar
  28. 28.
    Pan Z, Kao T, Horvath Z, Lemos J, Sul JY, Cranstoun SD, Bennett V, Scherer SS et al (2006) A common ankyrin-G-based mechanism retains KCNQ and NaV channels at electrically active domains of the axon. J Neurosci 26:2599–2613.  https://doi.org/10.1523/JNEUROSCI.4314-05.2006 CrossRefPubMedGoogle Scholar
  29. 29.
    Kole MHP, Stuart GJ (2012) Signal processing in the axon initial segment. Neuron 73:235–247.  https://doi.org/10.1016/j.neuron.2012.01.007 CrossRefPubMedGoogle Scholar
  30. 30.
    Yoshimura T, Rasband MN (2014) Axon initial segments: diverse and dynamic neuronal compartments. Curr Opin Neurol 27:96–102.  https://doi.org/10.1016/j.conb.2014.03.004 CrossRefGoogle Scholar
  31. 31.
    Bean BP (2007) The action potential in mammalian central neurons. Nat Rev Neurosci 8:451–465.  https://doi.org/10.1038/nrn2148 CrossRefPubMedGoogle Scholar
  32. 32.
    Traub RD, Miles R (1992) Neuronal networks of the hippocampus. Cambridge University Press 82:394–395 doi: https://doi.org/10.1016/0013-4694(92)90012-7
  33. 33.
    Traub RD, Miles R, Wong RK (1989) Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 10:1319–1325.  https://doi.org/10.1126/science.2646715 CrossRefGoogle Scholar
  34. 34.
    Kawaguchi Y, Hama K (1988) Physiological heterogeneity of nonpyramidal cells in rat hippocampal CA1 region. Exp Brain Res 72:494–502.  https://doi.org/10.1007/BF00250594 CrossRefPubMedGoogle Scholar
  35. 35.
    Lacaille JC, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7:1979–1993.  https://doi.org/10.1523/JNEUROSCI.07-07-01979.1987 CrossRefPubMedGoogle Scholar
  36. 36.
    Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 8:1411–1424.  https://doi.org/10.1523/JNEUROSCI.08-04-01411.1988 CrossRefPubMedGoogle Scholar
  37. 37.
    Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104.  https://doi.org/10.1016/0166-2236(90)90185-D CrossRefPubMedGoogle Scholar
  38. 38.
    Suter BA, Migliore M, Shepherd GM (2013) Intrinsic electrophysiology of mouse corticospinal neurons: a class-specific triad of spike-related properties. Cereb Cortex 23:1965–1977.  https://doi.org/10.1093/cercor/bhs184 CrossRefPubMedGoogle Scholar
  39. 39.
    Banker G, Goslin K (1998) Culturing nerve cells, 2nd edn. MIT Press, Cambridge MA, pp. 339–370Google Scholar
  40. 40.
    Chiappalone M, Casagrande S, Tedesco M, Valtorta F, Baldelli P, Martinoia S, Benfenati F (2009) Opposite changes in glutamatergic and GABAergic transmission underlie the diffuse hyperexcitability of synapsin I deficient cortical networks. Cereb Cortex 19:1422–1439.  https://doi.org/10.1093/cercor/bhn182 CrossRefPubMedGoogle Scholar
  41. 41.
    Valente P, Casagrande S, Nieus T, Verstegen AMJ, Valtorta F, Benfenati F, Baldelli P (2012) Site-specific synapsin I phosphorylation participates in the expression of post-tetanic potentiation and its enhancement by BDNF. J Neurosci 32:5868–5879.  https://doi.org/10.1523/JNEUROSCI.5275-11.2012 CrossRefPubMedGoogle Scholar
  42. 42.
    Glynn MW, McAllister AK (2006) Immunocytochemistry and quantification of protein colocalization in cultured neurons. Nat Protoc 1:1287–1296.  https://doi.org/10.1038/nprot.2006.220 CrossRefPubMedGoogle Scholar
  43. 43.
    Fruscione F, Valente P, Sterlini B, Romei A, Baldassari S, Fadda M, Prestigio C, Giansante G et al (2018) PRRT2 controls neuronal excitability by negatively modulating Na+ channel 1.2/1.6 activity. Brain 141:1000–1016.  https://doi.org/10.1093/brain/awy051 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465:1070–1074.  https://doi.org/10.1038/nature09160 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Valente P, Lignani G, Medrihan L, Bosco F, Contestabile A, Lippiello P, Ferrea E, Schachner M et al (2016) Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels. J Cell Sci 129:1878–1891.  https://doi.org/10.1242/jcs.182089 CrossRefPubMedGoogle Scholar
  46. 46.
    Platkiewicz J, Brette R (2010) A threshold equation for action potential initiation. PLoS Comput Biol 6(7):e1000850.  https://doi.org/10.1371/journal.pcbi.1000850 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Synaptic Neuroscience and TechnologyIstituto Italiano di TecnologiaGenoaItaly
  2. 2.Department of Experimental Medicine, School of Medicine and PharmacyUniversity of GenoaGenoaItaly
  3. 3.IRCSS, Ospedale Policlinico San MartinoGenoaItaly
  4. 4.Department of Neuroscience and Brain TechnologiesIstituto Italiano di TecnologiaGenovaItaly
  5. 5.Department of Genetic and Behavioral NeuroscienceGunma University Graduate School of MedicineMaebashiJapan

Personalised recommendations