Advertisement

Microglial Depletion with Clodronate Liposomes Increases Proinflammatory Cytokine Levels, Induces Astrocyte Activation, and Damages Blood Vessel Integrity

  • Xiaoning Han
  • Qian Li
  • Xi Lan
  • Leena EL-Mufti
  • Honglei Ren
  • Jian WangEmail author
Article
  • 32 Downloads

Abstract

Investigators are increasingly interested in using microglial depletion to study the role of microglia under pathologic conditions. Liposome-encapsulated clodronate is commonly used to eliminate macrophage populations because it causes functionally irreversible inhibition and apoptosis once phagocytized by macrophages. Recent studies have shown that microglia can be depleted in disease models by injecting clodronate liposomes into the brain parenchyma. However, it is unclear whether intracerebral administration of clodronate liposomes is a practical method of eliminating microglia under physiologic conditions or whether microglial depletion induces damage to other brain cells. In this study, injecting 1 μL of clodronate liposomes (7 μg/μL) into the striatum of mice caused ablation of microglia at 1 day that persisted for 3 days. Microglia reappeared in the boundary regions of microglia elimination after 5 days. Importantly, we observed an increase in proinflammatory cytokine levels and an increase in neural/glial antigen 2 and glial fibrillary acidic protein expression in the perilesional region. In contrast, expression levels of myelin basic protein, microtubule-associated protein 2, and postsynaptic protein-95 decreased in the periphery of regions where microglia were depleted. Moreover, clodronate liposome administration decreased the density and integrity of blood vessels in the perilesional regions. In cultured primary neurons, clodronate liposome exposure also attenuated ATP synthesis. Together, these findings suggest that intracerebral administration of clodronate liposomes into brain parenchyma can deplete microglia, but can also damage other brain cells and blood vessel integrity.

Keywords

Microglial depletion Clodronate liposomes Inflammation 

Notes

Acknowledgments

We thank Claire Levine for assistance with manuscript preparation.

Funding Information

This work was supported by the National Institutes of Health (R01NS102583 and R01NS105894 to J. Wang), the American Heart Association (Grant-in-Aid 17GRNT33660766 to J. Wang; Scientist Development Grant 16SDG30980031 to X. Han; Postdoctoral Fellowship Award 17POST33660191 to X. Lan), and a Stimulating and Advancing ACCM Research (StAAR) Award from the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Johns Hopkins University, School of Medicine at which the studies were conducted.

Supplementary material

12035_2019_1502_Fig6_ESM.png (702 kb)
Supplementary Fig 1

Parenchymal injection of clodronate liposomes (Clo-Lip) effectively depletes microglia. a, b Representative images of brain sections 4 days after injection of 1 μL fluorescent Dil-labeled liposomes (Dil-Lip) into striatum (a) or lateral ventricle (b). Numbers in the images indicate anteroposterior ordinate distance to the bregma. Scale bars: (a) 100 μm, (b) 500 μm. Red: Dil-Lip, green: Cx3cr1-GFP. c C57BL/6 mice were administered 1 μL (7 μg/μL) of Clo-Lip via striatal injection. Body weight did not change significantly after 1 or 3 days. n = 9. Data are presented as mean ± SD. d Dot plot represents propidium iodide (PI) staining of homogenized brain tissues from Cx3cr1-GFP mice. The R1 population in the left panel represents all events. The right panel shows subsets of the R1 population: red, live cells (PI-negative) and blue, dead cells (PI-positive). e Cx3cr1-GFP+ microglia in ipsilateral cortex were analyzed by flow cytometry on days 1, 4, and 7 after Clo-Lip striatal injection. Representative dot plots are shown, and percentages of Cx3cr1-GFP+ population are indicated. Red: Cx3cr1-GFP− population, green: Cx3cr1-GFP+ population. (PNG 702 kb)

12035_2019_1502_MOESM1_ESM.tif (3.9 mb)
High resolution image (TIF 4032 kb)

References

  1. 1.
    Gatti D, Viapiana O, Idolazzi L, Fracassi E, Ionescu C, Dartizio C, Troplini S, Kunnathully V et al (2014) Distinct effect of zoledronate and clodronate on circulating levels of DKK1 and sclerostin in women with postmenopausal osteoporosis. Bone 67:189–192.  https://doi.org/10.1016/j.bone.2014.06.037 CrossRefPubMedGoogle Scholar
  2. 2.
    Valenti MT, Mottes M, Biotti A, Perduca M, Pisani A, Bovi M, Deiana M, Cheri S et al (2017) Clodronate as a therapeutic strategy against osteoarthritis. Int J Mol Sci 18(12).  https://doi.org/10.3390/ijms18122696
  3. 3.
    Frediani B, Bertoldi I (2015) Clodronate: new directions of use. Clin Cases Miner Bone Metab 12(2):97–108.  https://doi.org/10.11138/ccmbm/2015.12.2.097 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nardi A, Ventura L, Cozzi L, Tonini G (2016) Clodronate news of efficacy in osteoporosis. Clin Cases Miner Bone Metab 13(1):33–35.  https://doi.org/10.11138/ccmbm/2016.13.1.033 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    van Rooijen N, Hendrikx E (2010) Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol Biol 605:189–203.  https://doi.org/10.1007/978-1-60327-360-2_13 CrossRefPubMedGoogle Scholar
  6. 6.
    van Rooijen N, Sanders A, van den Berg TK (1996) Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J Immunol Methods 193(1):93–99CrossRefGoogle Scholar
  7. 7.
    Van Rooijen N, Sanders A (1994) Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods 174(1–2):83–93CrossRefGoogle Scholar
  8. 8.
    Van Rooijen N, Sanders A (1996) Kupffer cell depletion by liposome-delivered drugs: comparative activity of intracellular clodronate, propamidine, and ethylenediaminetetraacetic acid. Hepatology 23(5):1239–1243.  https://doi.org/10.1053/jhep.1996.v23.pm0008621159 CrossRefPubMedGoogle Scholar
  9. 9.
    Takano S, Uchida K, Inoue G, Miyagi M, Aikawa J, Iwase D, Iwabuchi K, Matsumoto T et al (2017) Nerve growth factor regulation and production by macrophages in osteoarthritic synovium. Clin Exp Immunol 190(2):235–243.  https://doi.org/10.1111/cei.13007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Prinz M, Erny D, Hagemeyer N (2017) Ontogeny and homeostasis of CNS myeloid cells. Nat Immunol 18(4):385–392.  https://doi.org/10.1038/ni.3703 CrossRefPubMedGoogle Scholar
  11. 11.
    Goldmann T, Wieghofer P, Jordao MJ, Prutek F, Hagemeyer N, Frenzel K, Amann L, Staszewski O et al (2016) Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 17(7):797–805.  https://doi.org/10.1038/ni.3423 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lan X, Han X, Li Q, Yang QW, Wang J (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 13(7):420–433.  https://doi.org/10.1038/nrneurol.2017.69 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lou N, Takano T, Pei Y, Xavier AL, Goldman SA, Nedergaard M (2016) Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc Natl Acad Sci U S A 113(4):1074–1079.  https://doi.org/10.1073/pnas.1520398113 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ et al (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218.  https://doi.org/10.1038/nn.3469 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhang Z, Zhang Z, Lu H, Yang Q, Wu H, Wang J (2017) Microglial polarization and inflammatory mediators after intracerebral hemorrhage. Mol Neurobiol 54(3):1874–1886.  https://doi.org/10.1007/s12035-016-9785-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Aguzzi A, Barres BA, Bennett ML (2013) Microglia: scapegoat, saboteur, or something else? Science 339(6116):156–161.  https://doi.org/10.1126/science.1227901 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Andreou KE, Soto MS, Allen D, Economopoulos V, de Bernardi A, Larkin JR, Sibson NR (2017) Anti-inflammatory microglia/macrophages as a potential therapeutic target in brain metastasis. Front Oncol 7:251.  https://doi.org/10.3389/fonc.2017.00251 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fernandez-Lopez D, Faustino J, Klibanov AL, Derugin N, Blanchard E, Simon F, Leib SL, Vexler ZS (2016) Microglial cells prevent hemorrhage in neonatal focal arterial stroke. J Neurosci 36(10):2881–2893.  https://doi.org/10.1523/JNEUROSCI.0140-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, Vexler ZS (2011) Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 31(36):12992–13001.  https://doi.org/10.1523/JNEUROSCI.2102-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hawkes CA, McLaurin J (2009) Selective targeting of perivascular macrophages for clearance of beta-amyloid in cerebral amyloid angiopathy. Proc Natl Acad Sci U S A 106(4):1261–1266.  https://doi.org/10.1073/pnas.0805453106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Han X, Zhao X, Lan X, Li Q, Gao Y, Liu X, Wan J, Yang Z, et al. (2018) 20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. J Cereb Blood Flow Metab:271678X18762645. doi: https://doi.org/10.1177/0271678X18762645
  22. 22.
    Li Q, Wan J, Lan X, Han X, Wang Z, Wang J (2017) Neuroprotection of brain-permeable iron chelator VK-28 against intracerebral hemorrhage in mice. J Cereb Blood Flow Metab 37(9):3110–3123.  https://doi.org/10.1177/0271678X17709186 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhu W, Gao Y, Wan J, Lan X, Han X, Zhu S, Zang W, Chen X et al (2018) Changes in motor function, cognition, and emotion-related behavior after right hemispheric intracerebral hemorrhage in various brain regions of mouse. Brain Behav Immun 69:568–581.  https://doi.org/10.1016/j.bbi.2018.02.004 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhu W, Gao Y, Chang CF, Wan JR, Zhu SS, Wang J (2014) Mouse models of intracerebral hemorrhage in ventricle, cortex, and hippocampus by injections of autologous blood or collagenase. PLoS One 9(5):e97423.  https://doi.org/10.1371/journal.pone.0097423 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang J, Li Q, Wang Z, Qi C, Han X, Lan X, Wan J, Wang W et al (2017) Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice. Sci Rep 7:40358.  https://doi.org/10.1038/srep40358 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J et al (2017) Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight 2(7):e90777.  https://doi.org/10.1172/jci.insight.90777 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lan X, Han X, Li Q, Li Q, Gao Y, Cheng T, Wan J, Zhu W et al (2017) Pinocembrin protects hemorrhagic brain primarily by inhibiting toll-like receptor 4 and reducing M1 phenotype microglia. Brain Behav Immun 61:326–339.  https://doi.org/10.1016/j.bbi.2016.12.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Pierzchalski A, Mittag A, Bocsi J, Tarnok A (2013) An innovative cascade system for simultaneous separation of multiple cell types. PLoS One 8(9):e74745.  https://doi.org/10.1371/journal.pone.0074745 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Han X, Lan X, Li Q, Gao Y, Zhu W, Cheng T, Maruyama T, Wang J (2016) Inhibition of prostaglandin E2 receptor EP3 mitigates thrombin-induced brain injury. J Cereb Blood Flow Metab 36(6):1059–1074.  https://doi.org/10.1177/0271678X15606462 CrossRefPubMedGoogle Scholar
  30. 30.
    Cheng T, Wang W, Li Q, Han X, Xing J, Qi C, Lan X, Wan J et al (2016) Cerebroprotection of flavanol (−)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. Free Radic Biol Med 92:15–28.  https://doi.org/10.1016/j.freeradbiomed.2015.12.027 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang J, Li X, Kwansa H, Kim YT, Yi L, Hong G, Andrabi SA, Dawson VL et al (2017) Augmentation of poly(ADP-ribose) polymerase-dependent neuronal cell death by acidosis. J Cereb Blood Flow Metab 37(6):1982–1993.  https://doi.org/10.1177/0271678X16658491 CrossRefPubMedGoogle Scholar
  32. 32.
    Chung SJ, Nagaraju GP, Nagalingam A, Muniraj N, Kuppusamy P, Walker A, Woo J, Gyorffy B et al (2017) ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis. Autophagy 13(8):1386–1403.  https://doi.org/10.1080/15548627.2017.1332565 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cheng T, Yang B, Li D, Ma S, Tian Y, Qu R, Zhang W, Zhang Y et al (2015) Wharton’s jelly transplantation improves neurologic function in a rat model of traumatic brain injury. Cell Mol Neurobiol 35(5):641–649.  https://doi.org/10.1007/s10571-015-0159-9 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Polfliet MM, Goede PH, van Kesteren-Hendrikx EM, van Rooijen N, Dijkstra CD, van den Berg TK (2001) A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol 116(2):188–195CrossRefGoogle Scholar
  35. 35.
    Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, Wang J, Zhao L et al (2018) Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 21(4):530–540.  https://doi.org/10.1038/s41593-018-0090-8 CrossRefPubMedGoogle Scholar
  36. 36.
    Frith JC, Monkkonen J, Blackburn GM, Russell RG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(beta, gamma-dichloromethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12(9):1358–1367.  https://doi.org/10.1359/jbmr.1997.12.9.1358 CrossRefPubMedGoogle Scholar
  37. 37.
    Lehenkari PP, Kellinsalmi M, Napankangas JP, Ylitalo KV, Monkkonen J, Rogers MJ, Azhayev A, Vaananen HK et al (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61(5):1255–1262CrossRefGoogle Scholar
  38. 38.
    Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18(11):489–496CrossRefGoogle Scholar
  39. 39.
    Ferguson SM (2018) Neuronal lysosomes. Neurosci Lett.  https://doi.org/10.1016/j.neulet.2018.04.005
  40. 40.
    Gorenstein C, Bundman MC, Lew PJ, Olds JL, Ribak CE (1985) Dendritic transport. I. Colchicine stimulates the transport of lysosomal enzymes from cell bodies to dendrites. J Neurosci 5(8):2009–2017CrossRefGoogle Scholar
  41. 41.
    Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28(2):511–525CrossRefGoogle Scholar
  42. 42.
    Fernandez-Monreal M, Brown TC, Royo M, Esteban JA (2012) The balance between receptor recycling and trafficking toward lysosomes determines synaptic strength during long-term depression. J Neurosci 32(38):13200–13205.  https://doi.org/10.1523/JNEUROSCI.0061-12.2012 CrossRefPubMedGoogle Scholar
  43. 43.
    Gowrishankar S, Yuan P, Wu Y, Schrag M, Paradise S, Grutzendler J, De Camilli P, Ferguson SM (2015) Massive accumulation of luminal protease-deficient axonal lysosomes at Alzheimer’s disease amyloid plaques. Proc Natl Acad Sci U S A 112(28):E3699–E3708.  https://doi.org/10.1073/pnas.1510329112 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Blazquez-Llorca L, Valero-Freitag S, Rodrigues EF, Merchan-Perez A, Rodriguez JR, Dorostkar MM, DeFelipe J, Herms J (2017) High plasticity of axonal pathology in Alzheimer’s disease mouse models. Acta Neuropathol Commun 5(1):14.  https://doi.org/10.1186/s40478-017-0415-y CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Rangaraju V, Calloway N, Ryan TA (2014) Activity-driven local ATP synthesis is required for synaptic function. Cell 156(4):825–835.  https://doi.org/10.1016/j.cell.2013.12.042 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, Wendland MF, Vexler ZS (2012) Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci 32(28):9588–9600.  https://doi.org/10.1523/JNEUROSCI.5977-11.2012 CrossRefPubMedGoogle Scholar
  47. 47.
    Biname F, Sakry D, Dimou L, Jolivel V, Trotter J (2013) NG2 regulates directional migration of oligodendrocyte precursor cells via Rho GTPases and polarity complex proteins. J Neurosci 33(26):10858–10874.  https://doi.org/10.1523/JNEUROSCI.5010-12.2013 CrossRefPubMedGoogle Scholar
  48. 48.
    Kucharova K, Stallcup WB (2015) NG2-proteoglycan-dependent contributions of oligodendrocyte progenitors and myeloid cells to myelin damage and repair. J Neuroinflammation 12:161.  https://doi.org/10.1186/s12974-015-0385-6 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Xiang P, Zhu L, Jiang H, He BP (2015) The activation of NG2 expressing cells is downstream to microglial reaction and mediated by the transforming growth factor beta 1. J Neuroimmunol 279:50–63.  https://doi.org/10.1016/j.jneuroim.2015.01.006 CrossRefPubMedGoogle Scholar
  50. 50.
    Hackett AR, Yahn SL, Lyapichev K, Dajnoki A, Lee DH, Rodriguez M, Cammer N, Pak J et al (2018) Injury type-dependent differentiation of NG2 glia into heterogeneous astrocytes. Exp Neurol 308:72–79.  https://doi.org/10.1016/j.expneurol.2018.07.001 CrossRefPubMedGoogle Scholar
  51. 51.
    Sugimoto K, Nishioka R, Ikeda A, Mise A, Takahashi H, Yano H, Kumon Y, Ohnishi T et al (2014) Activated microglia in a rat stroke model express NG2 proteoglycan in peri-infarct tissue through the involvement of TGF-beta1. Glia 62(2):185–198.  https://doi.org/10.1002/glia.22598 CrossRefPubMedGoogle Scholar
  52. 52.
    Kumamaru H, Saiwai H, Kobayakawa K, Kubota K, van Rooijen N, Inoue K, Iwamoto Y, Okada S (2012) Liposomal clodronate selectively eliminates microglia from primary astrocyte cultures. J Neuroinflammation 9:116.  https://doi.org/10.1186/1742-2094-9-116 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ji K, Akgul G, Wollmuth LP, Tsirka SE (2013) Microglia actively regulate the number of functional synapses. PLoS One 8(2):e56293.  https://doi.org/10.1371/journal.pone.0056293 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, Sammali E, Pischiutta F et al (2016) Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice. J Neurotrauma 33(11):1060–1072.  https://doi.org/10.1089/neu.2015.4041 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Dagher NN, Najafi AR, Kayala KM, Elmore MR, White TE, Medeiros R, West BL, Green KN (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice. J Neuroinflammation 12:139.  https://doi.org/10.1186/s12974-015-0366-9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tap WD, Wainberg ZA, Anthony SP, Ibrahim PN, Zhang C, Healey JH, Chmielowski B, Staddon AP et al (2015) Structure-guided blockade of CSF1R kinase in tenosynovial giant-cell tumor. N Engl J Med 373(5):428–437.  https://doi.org/10.1056/NEJMoa1411366 CrossRefPubMedGoogle Scholar
  57. 57.
    Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B et al (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82(2):380–397.  https://doi.org/10.1016/j.neuron.2014.02.040 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Elmore MR, Lee RJ, West BL, Green KN (2015) Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation. PLoS One 10(4):e0122912.  https://doi.org/10.1371/journal.pone.0122912 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Janova H, Arinrad S, Balmuth E, Mitjans M, Hertel J, Habes M, Bittner RA, Pan H et al (2018) Microglia ablation alleviates myelin-associated catatonic signs in mice. J Clin Invest 128(2):734–745.  https://doi.org/10.1172/JCI97032 CrossRefPubMedGoogle Scholar
  60. 60.
    Hilla AM, Diekmann H, Fischer D (2017) Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury. J Neurosci 37(25):6113–6124.  https://doi.org/10.1523/JNEUROSCI.0584-17.2017 CrossRefPubMedGoogle Scholar
  61. 61.
    Lan X, Han X, Liu X, Wang J (2018) Inflammatory responses after intracerebral hemorrhage: from cellular function to therapeutic targets. J Cereb Blood Flow Metab:271678X18805675. doi: https://doi.org/10.1177/0271678X18805675
  62. 62.
    Chang CF, Wan J, Li Q, Renfroe SC, Heller NM, Wang J (2017) Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis 103:54–69.  https://doi.org/10.1016/j.nbd.2017.03.016 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Anesthesiology/Critical Care Medicine, School of MedicineJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingPeople’s Republic of China
  3. 3.Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingPeople’s Republic of China

Personalised recommendations