Advertisement

A Novel Divergent Gene Transcription Paradigm—the Decisive, Brain-Specific, Neural |-Srgap2–Fam72a-| Master Gene Paradigm

  • Nguyen Thi Thanh Ho
  • Arne Kutzner
  • Klaus HeeseEmail author
Article
  • 61 Downloads

Abstract

Brain development and repair largely depend on neural stem cells (NSCs). Here, we suggest that two genes, i.e., Srgap2 (SLIT-ROBO Rho GTPase–activating protein 2) and Fam72a (family with sequence similarity to 72, member A), constitute a single, NSC-specific, |-Srgap2–Fam72a-| master gene pair co-existing in reciprocal functional dependency. This gene pair has a dual, commonly used, intergenic region (IGR) promotor, which is a prerequisite in controlling human brain plasticity. We applied fluorescence cellular microscopy and fluorescence-activated cell sorting (FACS) to assess rat |-Srgap2–Fam72a-| master gene IGR promotor activity upon stimulation with two contrary growth factors: nerve growth factor (Ngf, a differentiation growth factor) and epidermal growth factor (Egf, a mitotic growth factor). We found that Ngf and Egf acted on the same IGR gene promotor element of the |-Srgap2–Fam72a-| master gene to mediate cell differentiation and proliferation, respectively. Ngf mediated Srgap2 expression and neuronal survival and differentiation while Egf activated Fam72a transcription and cell proliferation. Our data provide new insights into the specific regulation of the |-Srgap2–Fam72a-| master gene with its dual IGR promotor that controls two reverse-oriented functional-dependent genes located on opposite DNA strands. This structure represents a novel paradigm for controlling transcription of divergent genes in regulating NSC gene expression. This paradigm may allow for novel therapeutic approaches to restore or improve higher cognitive functions and cure cancers.

Keywords

Brain Cell cycle Differentiation Divergent transcription Gene promotor Proliferation 

Abbreviations

Akt

AK strain transforming, AKT serine/threonine kinase

ANOVA

Analysis of variance

Atf1

Activating transcription factor 1

Bad

BCL2-associated agonist of cell death

Bak1

BCL2-antagonist/killer 1

Bax

BCL2-associated X

Bcl2

B cell lymphoma 2

Bcl2l1

Bcl2-like 1

Bid

BH3-interacting domain death agonist

Braf

B rapidly accelerated fibrosarcoma (B-Raf) proto-oncogene, serine/threonine kinase

BS

Binding site

BSA

Bovine serum albumin

Casp

Caspase

Ccna/b/d/e

Cyclin A/B/D/E

Cdk

Cyclin-dependent kinase

Cdkn1a

Cyclin-dependent kinase inhibitor 1A

Chr

Chromosome

CMV

Cytomegalovirus

CNS

Central nervous system

Creb1

cAMP-responsive element-binding protein 1

Cycs

Cytochrome c, somatic

DAPI

4′,6-Diamidino-2-phenylindole

DIC

Differential interference contrast

DMEM

Dulbecco’s modified Eagle’s medium

E

Exon

E2f

E2 transcription factor

EDTA

Ethylenediaminetetraacetic acid

Egf

Epidermal growth factor

Egfr

Epidermal growth factor receptor

FACS

Fluorescence-activated cell sorting

Fam72a

Family with sequence similarity 72, member A

FBS

Fetal bovine serum

Fos

Finkel-Biskis-Jinkins (FBJ) murine osteosarcoma (Fos) proto-oncogene, activator protein 1 (AP-1) transcription factor subunit

GFP

Green fluorescent protein

Hdac1

Histone deacetylase 1

HEPES

4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid

HS

Horse serum

I

Intron

IGR

Intergenic region

IRES2

Internal ribosome entry site 2

KCLB

Korean cell line bank

Kmt5b/c

Lysine methyltransferase 5B/C

Map2k

Mitogen-activated protein kinase kinase

Mapk

Mitogen-activated protein kinase

Mcl1

Myeloid cell leukemia 1, BCL2 family apoptosis regulator

Mdm2

Murine double minute 2 proto-oncogene

MOMP

Mitochondrial outer membrane permeabilization

Mt1

Metallothionein 1

Myc

Myelocytomatosis viral oncogene

NCBI

National Center for Biotechnology Information

NDR

Nucleosome-depleted region

NEAA

Non-essential amino acids

Ngf

Nerve growth factor

NSC

Neural stem cell

Ntrk1

Neurotrophic receptor tyrosine kinase 1

P

Phosphorylation

P/S

Penicillin, streptomycin

pDNA

Plasmid DNA

Pik3cg

Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma

PROMPT

Promoter upstream transcript

Rap1

Ras-related protein 1

Ras

Rat sarcoma (RAS) proto-oncogene, GTPase

Rb

Retinoblastoma (RB) transcriptional corepressor

RFP

Red fluorescent protein

SEM

Standard error of the mean

Srgap2

SLIT-ROBO Rho GTPase–activating protein 2

Suv39h1

Suppressor of variegation 3-9 homolog 1

TF

Transcription factor

TFBS

Transcription factor–binding sites

Tfdp1

Transcription factor dimerization partner 1 (Dp-1)

Tp53

Tumor protein 53

w/o

Without

+

Positive

Notes

Acknowledgements

We thank Hanyang University for providing a scholarship to Ms. N. T. T. H.

Funding Information

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which was funded by the Ministry of Education (2015R1D1A1A01057243).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Raju TN (2000) The Nobel chronicles. 1986: Stanley Cohen (b 1922); Rita Levi-Montalcini (b 1909). Lancet 355(9202):506CrossRefGoogle Scholar
  2. 2.
    Ribatti D (2016) The failed attribution of the Nobel Prize for Medicine or Physiology to Viktor Hamburger for the discovery of Nerve Growth Factor. Brain Res Bull 124:306–309.  https://doi.org/10.1016/j.brainresbull.2016.02.019 CrossRefPubMedGoogle Scholar
  3. 3.
    Salazar-Roa M, Malumbres M (2017) Fueling the cell division cycle. Trends Cell Biol 27(1):69–81.  https://doi.org/10.1016/j.tcb.2016.08.009 CrossRefPubMedGoogle Scholar
  4. 4.
    Dalton S (2015) Linking the cell cycle to cell fate decisions. Trends Cell Biol 25(10):592–600.  https://doi.org/10.1016/j.tcb.2015.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ajioka I (2014) Coordination of proliferation and neuronal differentiation by the retinoblastoma protein family. Develop Growth Differ 56(5):324–334.  https://doi.org/10.1111/dgd.12127 CrossRefGoogle Scholar
  6. 6.
    Hardwick LJ, Ali FR, Azzarelli R, Philpott A (2015) Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res 359(1):187–200.  https://doi.org/10.1007/s00441-014-1895-8 CrossRefPubMedGoogle Scholar
  7. 7.
    Cheffer A, Tarnok A, Ulrich H (2013) Cell cycle regulation during neurogenesis in the embryonic and adult brain. Stem Cell Rev 9(6):794–805.  https://doi.org/10.1007/s12015-013-9460-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296(5573):1648–1649.  https://doi.org/10.1126/science.1071552 CrossRefPubMedGoogle Scholar
  9. 9.
    Counts SE, Mufson EJ (2017) Regulator of cell cycle (RGCC) expression during the progression of Alzheimer’s disease. Cell Transplant 26(4):693–702.  https://doi.org/10.3727/096368916X694184 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhao CF, Liu Y, Ni YL, Yang JW, Hui HD, Sun ZB, Liu SJ (2013) SCIRR39 promotes neurite extension via RhoA in NGF-induced PC12 cells. Dev Neurosci 35(5):373–383.  https://doi.org/10.1159/000350715 CrossRefPubMedGoogle Scholar
  11. 11.
    Mishra M, Akatsu H, Heese K (2011) The novel protein MANI modulates neurogenesis and neurite-cone growth. J Cell Mol Med 15(8):1713–1725.  https://doi.org/10.1111/j.1582-4934.2010.01134.x CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mishra M, Manavalan A, Sze SK, Heese K (2012) Neuronal p60TRP expression modulates cardiac capacity. J Proteome 75(5):1600–1617.  https://doi.org/10.1016/j.jprot.2011.11.034 CrossRefGoogle Scholar
  13. 13.
    Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73(7):2424–2428CrossRefGoogle Scholar
  14. 14.
    Jensch A, Thomaseth C, Radde NE (2017) Sampling-based Bayesian approaches reveal the importance of quasi-bistable behavior in cellular decision processes on the example of the MAPK signaling pathway in PC-12 cell lines. BMC Syst Biol 11(1):11.  https://doi.org/10.1186/s12918-017-0392-6 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Offermann B, Knauer S, Singh A, Fernandez-Cachon ML, Klose M, Kowar S, Busch H, Boerries M (2016) Boolean modeling reveals the necessity of transcriptional regulation for bistability in PC12 cell differentiation. Front Genet 7:44.  https://doi.org/10.3389/fgene.2016.00044 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9(3):324–330.  https://doi.org/10.1038/ncb1543 CrossRefPubMedGoogle Scholar
  17. 17.
    Kutzner A, Pramanik S, Kim PS, Heese K (2015) All-or-(N) one - an epistemological characterization of the human tumorigenic neuronal paralogous FAM72 gene loci. Genomics 106(5):278–285.  https://doi.org/10.1016/j.ygeno.2015.07.003 CrossRefPubMedGoogle Scholar
  18. 18.
    Brudvig JJ, Cain JT, Sears RM, Schmidt-Grimminger GG, Wittchen ES, Adler KB, Ghashghaei HT, Weimer JM (2018) MARCKS regulates neuritogenesis and interacts with a CDC42 signaling network. Sci Rep 8(1):13278.  https://doi.org/10.1038/s41598-018-31578-0 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Charrier C, Joshi K, Coutinho-Budd J, Kim JE, Lambert N, de Marchena J, Jin WL, Vanderhaeghen P et al (2012) Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell 149(4):923–935.  https://doi.org/10.1016/j.cell.2012.03.034 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fossati M, Pizzarelli R, Schmidt ER, Kupferman JV, Stroebel D, Polleux F, Charrier C (2016) SRGAP2 and its human-specific paralog co-regulate the development of excitatory and inhibitory synapses. Neuron 91(2):356–369.  https://doi.org/10.1016/j.neuron.2016.06.013 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Jiao Q, Wang L, Zhang Z, Wang Y, Yan H, Ma W, Jin W, Lu H et al (2016) Dynamic expression of srGAP2 in cell nuclei and cytoplasm during the differentiation of rat neural stem cells in vitro. Mol Med Rep 14(5):4599–4605.  https://doi.org/10.3892/mmr.2016.5795 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Subramanian J, Nedivi E (2016) Filling the (SR)GAP in excitatory/inhibitory balance. Neuron 91(2):205–207.  https://doi.org/10.1016/j.neuron.2016.07.008 CrossRefPubMedGoogle Scholar
  23. 23.
    Lucas B, Hardin J (2017) Mind the (sr)GAP - roles of Slit-Robo GAPs in neurons, brains and beyond. J Cell Sci 130(23):3965–3974.  https://doi.org/10.1242/jcs.207456 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K, Wong ED, Devarajan K, Daugherty AC et al (2014) H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 158(3):673–688.  https://doi.org/10.1016/j.cell.2014.06.027 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nehar S, Mishra M, Heese K (2009) Identification and characterisation of the novel amyloid-beta peptide-induced protein p17. FEBS Lett 583(19):3247–3253.  https://doi.org/10.1016/j.febslet.2009.09.018 CrossRefPubMedGoogle Scholar
  26. 26.
    Ho NTT, Kutzner A, Heese K (2017) Brain plasticity, cognitive functions and neural stem cells: a pivotal role for the brain-specific neural master gene |-SRGAP2-FAM72-|. Biol Chem 399(1):55–61.  https://doi.org/10.1515/hsz-2017-0190 CrossRefPubMedGoogle Scholar
  27. 27.
    Guo C, Zhang X, Fink SP, Platzer P, Wilson K, Willson JK, Wang Z, Markowitz SD (2008) Ugene, a newly identified protein that is commonly overexpressed in cancer and binds uracil DNA glycosylase. Cancer Res 68(15):6118–6126.  https://doi.org/10.1158/0008-5472.CAN-08-1259 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heese K (2013) The protein p17 signaling pathways in cancer. Tumour Biol 34(6):4081–4087.  https://doi.org/10.1007/s13277-013-0999-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Pramanik S, Kutzner A, Heese K (2015) Lead discovery and in silico 3D structure modeling of tumorigenic FAM72A (p17). Tumour Biol 36(1):239–249.  https://doi.org/10.1007/s13277-014-2620-7 CrossRefPubMedGoogle Scholar
  30. 30.
    Marko TA, Shamsan GA, Edwards EN, Hazelton PE, Rathe SK, Cornax I, Overn PR, Varshney J et al (2016) Slit-Robo GTPase-Activating Protein 2 as a metastasis suppressor in osteosarcoma. Sci Rep 6:39059.  https://doi.org/10.1038/srep39059 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ho NT, Kim PS, Kutzner A, Heese K (2017) Cognitive functions: human vs. animal - 4:1 advantage |-FAM72-SRGAP2-|. J Mol Neurosci 61(4):603–606.  https://doi.org/10.1007/s12031-017-0901-5 CrossRefPubMedGoogle Scholar
  32. 32.
    Chen Y, Pai AA, Herudek J, Lubas M, Meola N, Jarvelin AI, Andersson R, Pelechano V et al (2016) Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters. Nat Genet 48(9):984–994.  https://doi.org/10.1038/ng.3616 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lacadie SA, Ibrahim MM, Gokhale SA, Ohler U (2016) Divergent transcription and epigenetic directionality of human promoters. FEBS J 283(23):4214–4222.  https://doi.org/10.1111/febs.13747 CrossRefPubMedGoogle Scholar
  34. 34.
    Ibrahim MM, Karabacak A, Glahs A, Kolundzic E, Hirsekorn A, Carda A, Tursun B, Zinzen RP et al (2018) Determinants of promoter and enhancer transcription directionality in metazoans. Nat Commun 9(1):4472.  https://doi.org/10.1038/s41467-018-06962-z CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sulistio YA, Lee HK, Jung SJ, Heese K (2018) Interleukin-6-mediated induced pluripotent stem cell (iPSC)-derived neural differentiation. Mol Neurobiol 55(4):3513–3522.  https://doi.org/10.1007/s12035-017-0594-3 CrossRefPubMedGoogle Scholar
  36. 36.
    Bennett JO, Briggs WL (2008) Using and understanding mathematics: a quantitative reasoning approach. Pearson Addison Wesley, ReadingGoogle Scholar
  37. 37.
    Rahane CS, Kutzner A, Heese K (2019) A cancer tissue-specific FAM72 expression profile defines a novel glioblastoma multiform (GBM) gene-mutation signature. J Neuro-Oncol.  https://doi.org/10.1007/s11060-018-03029-3
  38. 38.
    Rahane CS, Kutzner A, Heese K (2019) Establishing a human adrenocortical carcinoma (ACC)-specific gene mutation signature. Cancer Genet 230:1–12.  https://doi.org/10.1016/j.cancergen.2018.10.005 CrossRefPubMedGoogle Scholar
  39. 39.
    Dennis MY, Nuttle X, Sudmant PH, Antonacci F, Graves TA, Nefedov M, Rosenfeld JA, Sajjadian S et al (2012) Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149(4):912–922.  https://doi.org/10.1016/j.cell.2012.03.033 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sporny M, Guez-Haddad J, Kreusch A, Shakartzi S, Neznansky A, Cross A, Isupov MN, Qualmann B et al (2017) Structural history of human SRGAP2 proteins. Mol Biol Evol 34(6):1463–1478.  https://doi.org/10.1093/molbev/msx094 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lin T, Islam O, Heese K (2006) ABC transporters, neural stem cells and neurogenesis--a different perspective. Cell Res 16(11):857–871.  https://doi.org/10.1038/sj.cr.7310107 CrossRefPubMedGoogle Scholar
  42. 42.
    Islam O, Gong X, Rose-John S, Heese K (2009) Interleukin-6 and neural stem cells: more than gliogenesis. Mol Biol Cell 20(1):188–199.  https://doi.org/10.1091/mbc.E08-05-0463 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Islam O, Loo TX, Heese K (2009) Brain-derived neurotrophic factor (BDNF) has proliferative effects on neural stem cells through the truncated TRK-B receptor, MAP kinase, AKT, and STAT-3 signaling pathways. Curr Neurovasc Res 6(1):42–53CrossRefGoogle Scholar
  44. 44.
    Pramanik S, Sulistio YA, Heese K (2017) Neurotrophin signaling and stem cells-implications for neurodegenerative diseases and stem cell therapy. Mol Neurobiol 54(9):7401–7459.  https://doi.org/10.1007/s12035-016-0214-7 CrossRefPubMedGoogle Scholar
  45. 45.
    Mesner PW, Winters TR, Green SH (1992) Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons. J Cell Biol 119(6):1669–1680CrossRefGoogle Scholar
  46. 46.
    Katoh S, Mitsui Y, Kitani K, Suzuki T (1996) Nerve growth factor rescues PC12 cells from apoptosis by increasing amount of bcl-2. Biochem Biophys Res Commun 229(2):653–657.  https://doi.org/10.1006/bbrc.1996.1859 CrossRefPubMedGoogle Scholar
  47. 47.
    Vaghefi H, Hughes AL, Neet KE (2004) Nerve growth factor withdrawal-mediated apoptosis in naive and differentiated PC12 cells through p53/caspase-3-dependent and -independent pathways. J Biol Chem 279(15):15604–15614.  https://doi.org/10.1074/jbc.M311500200 CrossRefPubMedGoogle Scholar
  48. 48.
    Moriguchi T, Gotoh Y, Nishida E (1995) Activation of two isoforms of mitogen-activated protein kinase kinase in response to epidermal growth factor and nerve growth factor. Eur J Biochem 234(1):32–38CrossRefGoogle Scholar
  49. 49.
    Zhang BH, Guan KL (2000) Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J 19(20):5429–5439.  https://doi.org/10.1093/emboj/19.20.5429 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Saba-El-Leil MK, Fremin C, Meloche S (2016) Redundancy in the world of MAP kinases: all for one. Front Cell Dev Biol 4:67.  https://doi.org/10.3389/fcell.2016.00067 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vaghefi H, Neet KE (2004) Deacetylation of p53 after nerve growth factor treatment in PC12 cells as a post-translational modification mechanism of neurotrophin-induced tumor suppressor activation. Oncogene 23(49):8078–8087.  https://doi.org/10.1038/sj.onc.1207953 CrossRefPubMedGoogle Scholar
  52. 52.
    Nayak G, Cooper GM (2012) p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling. Cell Death Dis 3:e400.  https://doi.org/10.1038/cddis.2012.138 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Graduate School of Biomedical Science and EngineeringHanyang UniversitySeoulRepublic of Korea
  2. 2.Department of Information Systems, College of EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations