Advertisement

Progerin-Induced Transcriptional Changes in Huntington’s Disease Human Pluripotent Stem Cell-Derived Neurons

  • Dorit Cohen-Carmon
  • Matan Sorek
  • Vitaly Lerner
  • Mundackal S. Divya
  • Malka Nissim-Rafinia
  • Yosef Yarom
  • Eran MeshorerEmail author
Article

Abstract

Huntington’s disease (HD) is a neurodegenerative late-onset genetic disorder caused by CAG expansions in the coding region of the Huntingtin (HTT) gene, resulting in a poly-glutamine (polyQ) expanded HTT protein. Considerable efforts have been devoted for studying HD and other polyQ diseases using animal models and cell culture systems, but no treatment currently exists. Human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer an elegant solution for modeling human diseases. However, as embryonic or rejuvenated cells, respectively, these pluripotent stem cells (PSCs) do not recapitulate the late-onset feature of the disease. Here, we applied a robust and rapid differentiation protocol to derive electrophysiologically active striatal GABAergic neurons from human wild-type (WT) and HD ESCs and iPSCs. RNA-seq analyses revealed that HD and WT PSC-derived neurons are highly similar in their gene expression patterns. Interestingly, ectopic expression of Progerin in both WT and HD neurons exacerbated the otherwise non-significant changes in gene expression between these cells, revealing IGF1 and genes involved in neurogenesis and nervous system development as consistently altered in the HD cells. This work provides a useful tool for modeling HD in human PSCs and reveals potential molecular targets altered in HD neurons.

Keywords

Progerin iPS cells iPSC Neuronal differentiation Embryonic stem cells HD 

Notes

Author Contributions

D. Cohen-Carmon, M. Sorek, V. Lerner, Y. Yarom, and E. Meshorer designed the research; D. Cohen-Carmon, M. Sorek, V. Lerner, and M. Nissim-Rafinia performed the research; D. Cohen-Carmon, M. Sorek, and V. Lerner analyzed the data; Cohen-Carmon, M. Sorek, and E. Meshorer wrote the paper.

Funding Information

The work was supported by the Israel Science Foundation (1140/17 to E.M.), a TEVA National Network of Excellence award (to E.M. and D.C.C), and the Azrieli Foundation Fellowship (to M.S.).

Supplementary material

12035_2019_1839_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1556 kb)
12035_2019_1839_MOESM2_ESM.xlsx (12 kb)
ESM 2 (XLSX 12 kb)
12035_2019_1839_MOESM3_ESM.xlsx (20 kb)
ESM 3 (XLSX 20 kb)
12035_2019_1839_MOESM4_ESM.xlsx (21 kb)
ESM 4 (XLSX 21 kb)

References

  1. 1.
    Milnerwood AJ, Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights from Huntington’s disease. Trends Neurosci 33(11):513–523.  https://doi.org/10.1016/j.tins.2010.08.002 CrossRefPubMedGoogle Scholar
  2. 2.
    Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4(4):398–403.  https://doi.org/10.1038/ng0893-398 CrossRefPubMedGoogle Scholar
  3. 3.
    Myers RH, MacDonald ME, Koroshetz WJ, Duyao MP, Ambrose CM, Taylor SA, Barnes G, Srinidhi J et al (1993) De novo expansion of a (CAG)n repeat in sporadic Huntington’s disease. Nat Genet 5(2):168–173.  https://doi.org/10.1038/ng1093-168 CrossRefPubMedGoogle Scholar
  4. 4.
    Pouladi MA, Morton AJ, Hayden MR (2013) Choosing an animal model for the study of Huntington’s disease. Nat Rev Neurosci 14(10):708–721.  https://doi.org/10.1038/nrn3570 CrossRefPubMedGoogle Scholar
  5. 5.
    Chen Y, Carter RL, Cho IK, Chan AW (2014) Cell-based therapies for Huntington’s disease. Drug Discov Today 19(7):980–984.  https://doi.org/10.1016/j.drudis.2014.02.012 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jung YW, Hysolli E, Kim KY, Tanaka Y, Park IH (2012) Human induced pluripotent stem cells and neurodegenerative disease: prospects for novel therapies. Curr Opin Neurol 25(2):125–130.  https://doi.org/10.1097/WCO.0b013e3283518226 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Halevy T, Urbach A (2014) Comparing ESC and iPSC-based models for human genetic disorders. J Clin Med 3(4):1146–1162.  https://doi.org/10.3390/jcm3041146 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Connor B (2018) Concise review: the use of stem cells for understanding and treating Huntington’s disease. Stem Cells 36(2):146–160.  https://doi.org/10.1002/stem.2747 CrossRefPubMedGoogle Scholar
  9. 9.
    Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105(43):16707–16712.  https://doi.org/10.1073/pnas.0808488105 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X et al (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10(4):455–464.  https://doi.org/10.1016/j.stem.2012.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Consortium HDi (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11(2):264–278.  https://doi.org/10.1016/j.stem.2012.04.027 CrossRefGoogle Scholar
  12. 12.
    Delli Carri A, Onorati M, Lelos MJ, Castiglioni V, Faedo A, Menon R, Camnasio S, Vuono R et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140(2):301–312.  https://doi.org/10.1242/dev.084608 CrossRefPubMedGoogle Scholar
  13. 13.
    Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E et al (2013) Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13(6):691–705.  https://doi.org/10.1016/j.stem.2013.11.006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bradley CK, Scott HA, Chami O, Peura TT, Dumevska B, Schmidt U, Stojanov T (2011) Derivation of Huntington’s disease-affected human embryonic stem cell lines. Stem Cells Dev 20(3):495–502.  https://doi.org/10.1089/scd.2010.0120 CrossRefPubMedGoogle Scholar
  15. 15.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:S0092-8674(07)01471-7.  https://doi.org/10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  16. 16.
    Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21.  https://doi.org/10.1093/bioinformatics/bts635 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Derr A, Yang C, Zilionis R, Sergushichev A, Blodgett DM, Redick S, Bortell R, Luban J et al (2016) End sequence analysis toolkit (ESAT) expands the extractable information from single-cell RNA-seq data. Genome Res 26(10):1397–1410.  https://doi.org/10.1101/gr.207902.116 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, Thomas PD (2017) PANTHER version 11: expanded annotation data from gene ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res 45(D1):D183–D189.  https://doi.org/10.1093/nar/gkw1138 CrossRefPubMedGoogle Scholar
  19. 19.
    Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27(3):275–280.  https://doi.org/10.1038/nbt.1529 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nicoleau C, Varela C, Bonnefond C, Maury Y, Bugi A, Aubry L, Viegas P, Bourgois-Rocha F et al (2013) Embryonic stem cells neural differentiation qualifies the role of Wnt/beta-catenin signals in human telencephalic specification and regionalization. Stem Cells 31(9):1763–1774.  https://doi.org/10.1002/stem.1462 CrossRefPubMedGoogle Scholar
  21. 21.
    Matsuda K, Kondoh H (2014) Dkk1-dependent inhibition of Wnt signaling activates Hesx1 expression through its 5′ enhancer and directs forebrain precursor development. Genes Cells 19(5):374–385.  https://doi.org/10.1111/gtc.12136 CrossRefPubMedGoogle Scholar
  22. 22.
    Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E et al (2009) Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461(7264):614–620.  https://doi.org/10.1038/nature08356 CrossRefPubMedGoogle Scholar
  23. 23.
    Chen JK, Taipale J, Young KE, Maiti T, Beachy PA (2002) Small molecule modulation of smoothened activity. Proc Natl Acad Sci U S A 99(22):14071–14076.  https://doi.org/10.1073/pnas.182542899 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Gorojankina T, Hoch L, Faure H, Roudaut H, Traiffort E, Schoenfelder A, Girard N, Mann A et al (2013) Discovery, molecular and pharmacological characterization of GSA-10, a novel small-molecule positive modulator of smoothened. Mol Pharmacol 83(5):1020–1029.  https://doi.org/10.1124/mol.112.084590 CrossRefPubMedGoogle Scholar
  25. 25.
    Ge H, Tan L, Wu P, Yin Y, Liu X, Meng H, Cui G, Wu N et al (2015) Poly-L-ornithine promotes preferred differentiation of neural stem/progenitor cells via ERK signalling pathway. Sci Rep 5:15535.  https://doi.org/10.1038/srep15535 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Prapong T, Uemura E, Hsu WH (2001) G protein and cAMP-dependent protein kinase mediate amyloid beta-peptide inhibition of neuronal glucose uptake. Exp Neurol 167(1):59–64.  https://doi.org/10.1006/exnr.2000.7519 CrossRefPubMedGoogle Scholar
  27. 27.
    Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309.  https://doi.org/10.1038/nrn1078 CrossRefPubMedGoogle Scholar
  28. 28.
    Chorev E, Yarom Y, Lampl I (2007) Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J Neurosci 27(19):5043–5052.  https://doi.org/10.1523/JNEUROSCI.5187-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M et al (2012) Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 30(7):1424–1435.  https://doi.org/10.1002/stem.1123 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Conforti P, Besusso D, Bocchi VD, Faedo A, Cesana E, Rossetti G, Ranzani V, Svendsen CN et al (2018) Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc Natl Acad Sci U S A 115(4):E762–E771.  https://doi.org/10.1073/pnas.1715865115 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, Doerr J, Ladewig J et al (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480(7378):543–546.  https://doi.org/10.1038/nature10671 CrossRefPubMedGoogle Scholar
  32. 32.
    Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298.  https://doi.org/10.1038/nature01629 CrossRefPubMedGoogle Scholar
  33. 33.
    Meshorer E, Gruenbaum Y (2008) Rejuvenating premature aging. Nat Med 14(7):713–715. doi:nm0708-713.  https://doi.org/10.1038/nm0708-713 CrossRefPubMedGoogle Scholar
  34. 34.
    Sieprath T, Darwiche R, De Vos WH (2012) Lamins as mediators of oxidative stress. Biochem Biophys Res Commun 421(4):635–639.  https://doi.org/10.1016/j.bbrc.2012.04.058 CrossRefPubMedGoogle Scholar
  35. 35.
    Skoczynska A, Budzisz E, Dana A, Rotsztejn H (2015) New look at the role of progerin in skin aging. Menopause Review-Przeglad Menopauzalny 14(1):53–58.  https://doi.org/10.5114/pm.2015.49532 CrossRefGoogle Scholar
  36. 36.
    Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM et al (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11(7):780–785.  https://doi.org/10.1038/nm1266 CrossRefPubMedGoogle Scholar
  37. 37.
    Lim RG, Salazar LL, Wilton DK, King AR, Stocksdale JT, Sharifabad D, Lau AL, Stevens B et al (2017) Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice. Nat Neurosci 20(5):648–660.  https://doi.org/10.1038/nn.4532 CrossRefGoogle Scholar
  38. 38.
    Saudou F, Humbert S (2016) The biology of Huntingtin. Neuron 89(5):910–926.  https://doi.org/10.1016/j.neuron.2016.02.003 CrossRefPubMedGoogle Scholar
  39. 39.
    Keryer G, Pineda JR, Liot G, Kim J, Dietrich P, Benstaali C, Smith K, Cordelieres FP et al (2011) Ciliogenesis is regulated by a huntingtin-HAP1-PCM1 pathway and is altered in Huntington disease. J Clin Investig 121(11):4372–4382.  https://doi.org/10.1172/Jci57552 CrossRefPubMedGoogle Scholar
  40. 40.
    Saleh N, Moutereau S, Azulay JP, Verny C, Simonin C, Tranchant C, El Hawajri N, Bachoud-Levi AC et al (2010) High insulinlike growth factor I is associated with cognitive decline in Huntington disease. Neurology 75(1):57–63.  https://doi.org/10.1212/WNL.0b013e3181e62076 CrossRefPubMedGoogle Scholar
  41. 41.
    Lopes C, Ribeiro M, Duarte AI, Humbert S, Saudou F, de Almeida LP, Hayden M, Rego AC (2014) IGF-1 intranasal administration rescues Huntington’s disease phenotypes in YAC128 mice. Mol Neurobiol 49(3):1126–1142.  https://doi.org/10.1007/s12035-013-8585-5 CrossRefPubMedGoogle Scholar
  42. 42.
    Campos PB, Paulsen BS, Rehen SK (2014) Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species. Front Aging Neurosci 6:292.  https://doi.org/10.3389/fnagi.2014.00292 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tan FCC, Hutchison ER, Eitan E, Mattson MP (2014) Are there roles for brain cell senescence in aging and neurodegenerative disorders? Biogerontology 15(6):643–660.  https://doi.org/10.1007/s10522-014-9532-1 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Alessio N, Capasso S, Ferone A, Di Bernardo G, Cipollaro M, Casale F, Peluso G, Giordano A et al (2017) Misidentified human gene functions with mouse models: the case of the retinoblastoma gene family in senescence. Neoplasia 19(10):781–790.  https://doi.org/10.1016/j.neo.2017.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, Klyachko VA, Nerbonne JM et al (2014) Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron 84(2):311–323.  https://doi.org/10.1016/j.neuron.2014.10.016 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Victor MB, Richner M, Olsen HE, Lee SW, Monteys AM, Ma C, Huh CJ, Zhang B et al (2018) Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci 21(3):341–352.  https://doi.org/10.1038/s41593-018-0075-7 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Tang Y, Liu ML, Zang T, Zhang CL (2017) Direct reprogramming rather than ipsc-based reprogramming maintains aging hallmarks in human motor neurons. Front Mol Neurosci:10.  https://doi.org/10.3389/fnmol.2017.00359

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020
corrected publication 2020

Authors and Affiliations

  1. 1.Department of Genetics, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.The Edmond and Lily Safra Center for Brain Sciences, Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
  3. 3.Department of Neurobiology, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
  4. 4.Department of PathologySree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvananthapuramIndia

Personalised recommendations