Advertisement

Investigating Causality Between Blood Metabolites and Emotional and Behavioral Responses to Traumatic Stress: a Mendelian Randomization Study

  • Carolina Muniz Carvalho
  • Frank R. Wendt
  • Dan J. Stein
  • Murray B. Stein
  • Joel Gelernter
  • Sintia I. Belangero
  • Renato PolimantiEmail author
Article

Abstract

To investigate the causal relationship between blood metabolites and traits related to trauma-response, we combined genome-wide and metabolome-wide datasets generated from large-scale cohorts. Five trauma-response traits ascertained in the UK Biobank (52,816 < N < 117,900 individuals) were considered: (i) “Avoided activities/situations because of previous stressful experience” (Avoidance); (ii) “Felt distant from other people” (Distant); (iii) “Felt irritable/had angry outbursts” (Irritable); (iv) “Felt very upset when reminded of stressful experience” (Upset); (v) “Repeated disturbing thoughts of stressful experience”. These were investigated with respect to 52 blood metabolites tested in a previous genome-wide-association study (N = 24,925 European-ancestry individuals). Linkage disequilibrium score regression, polygenic risk scoring (PRS), and Mendelian randomization were applied to the datasets. We observed that 14 metabolites were genetically correlated with trauma-response traits (p < 0.05). High-resolution PRS of 4 metabolites (citrate; glycoprotein acetyls; concentration of large very-low-density lipoproteins (VLDL) particles (LVLDLP); total cholesterol in medium particles of VLDL (MVLDLC)) were associated with trauma-response traits (false discovery rate Q < 10%). These genetic associations were partially due to causal relationships (Citrate→Upset β = − 0.058, p = 9.1 × 10-4; Glycoproteins→Avoidance β = 0.008, p = 0.003; LVLDLP→Distant β = 0.008, p = 0.022; MVLDLC→Avoidance β = 0.019, p = 3 × 10-4). No reverse associations were observed. In conclusion, our study supports causal relationships between certain blood metabolites and emotional and behavioral responses to traumatic experiences.

Keywords

Mendelian randomization Blood metabolites Trauma response Traumatic stress 

Notes

Acknowledgments

We thank the study participants, research groups, and the members of the cited studies for making their data available.

Funding Information

This research was supported by the Simons Foundation Autism Research Initiative (SFARI Explorer Award: 534858) and the American Foundation for Suicide Prevention (YIG-1-109-16). C.M.C. and S.I.B were supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2018/05995-4) international fellowship.

Compliance with Ethical Standards

Conflict of Interest

Dr. Murray Stein is paid for his editorial work on the journals Biological Psychiatry and Depression and Anxiety, and the health professional reference Up-To-Date. Dr. Dan Stein received personal fees from Lundbeck and Sun Pharmaceutical Industries. The other authors declare no competing interests.

Research Involving Human Participants

Owing to the use of previously collected, deidentified, aggregated data, this study did not require institutional review board approval. Ethical approval had been obtained in the original studies cited.

Supplementary material

12035_2019_1823_MOESM1_ESM.xlsx (102 kb)
ESM 1 (XLSX 102 kb)
12035_2019_1823_MOESM2_ESM.docx (411 kb)
ESM 2 (DOCX 411 kb)

References

  1. 1.
    Wermter A-K, Laucht M, Schimmelmann BG, Banaschweski T, Sonuga-Barke EJS, Rietschel M, Becker K (2010) From nature versus nurture, via nature and nurture, to gene × environment interaction in mental disorders. Eur Child Adolesc Psychiatry 19(3):199–210.  https://doi.org/10.1007/s00787-009-0082-z CrossRefPubMedGoogle Scholar
  2. 2.
    Bisson JI, Cosgrove S, Lewis C, Robert NP (2015) Post-traumatic stress disorder. BMJ 351:h6161.  https://doi.org/10.1136/bmj.h6161 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cicchetti D, Rogosch FA (2012) Gene × Environment interaction and resilience: effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Dev Psychopathol 24(2):411–427.  https://doi.org/10.1017/S0954579412000077 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Boyce WT (2016) Differential susceptibility of the developing brain to contextual adversity and stress. Neuropsychopharmacology 41(1):142–162.  https://doi.org/10.1038/npp.2015.294 CrossRefPubMedGoogle Scholar
  5. 5.
    McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904.  https://doi.org/10.1152/physrev.00041.2006 CrossRefGoogle Scholar
  6. 6.
    Carvalho CM, Coimbra BM, Ota VK, Mello MF, Belangero SI (2017) Single-nucleotide polymorphisms in genes related to the hypothalamic-pituitary-adrenal axis as risk factors for posttraumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet 174(7):671–682.  https://doi.org/10.1002/ajmg.b.32564 CrossRefPubMedGoogle Scholar
  7. 7.
    McEwen BS (2004) Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7.  https://doi.org/10.1196/annals.1314.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Banerjee SB, Morrison FG, Ressler KJ (2017) Genetic approaches for the study of PTSD: Advances and challenges. Neurosci Lett 649:139–146.  https://doi.org/10.1016/j.neulet.2017.02.058 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Breen MS, Tylee DS, Maihofer AX, Neylan TC, Mehta D, Binder EB, Chandler SD, Hess JL et al (2018) PTSD Blood transcriptome mega-analysis: shared inflammatory pathways across biological sex and modes of trauma. Neuropsychopharmacology 43(3):469–481.  https://doi.org/10.1038/npp.2017.220 CrossRefPubMedGoogle Scholar
  10. 10.
    Youssef NA, Lockwood L, Su S, Hao G, Rutten BPF (2018) The effects of trauma, with or without PTSD, on the transgenerational DNA methylation alterations in human offsprings. Brain Sci 8 (5). doi: https://doi.org/10.3390/brainsci8050083 CrossRefGoogle Scholar
  11. 11.
    O'Dushlaine CRL, Lee PH, Duncan L, Parikshak NN, Newhouse S, Ripke S, Neale BM, Purcell SM et al (2015) Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci 18(2):199–209.  https://doi.org/10.1038/nn.3922 CrossRefGoogle Scholar
  12. 12.
    Polimanti R, Kaufman J, Zhao H, Kranzler HR, Ursano RJ, Kessler RC, Gelernter J, Stein MB (2018) A genome-wide gene-by-trauma interaction study of alcohol misuse in two independent cohorts identifies PRKG1 as a risk locus. Mol Psychiatry 23(1):154–160.  https://doi.org/10.1038/mp.2017.24 CrossRefPubMedGoogle Scholar
  13. 13.
    Polimanti R, Zhang H, Smith AH, Zhao H, Farrer LA, Kranzler HR, Gelernter J (2017) Genome-wide association study of body mass index in subjects with alcohol dependence. Addict Biol 22(2):535–549.  https://doi.org/10.1111/adb.12317 CrossRefPubMedGoogle Scholar
  14. 14.
    Polimanti R, Zhao H, Farrer LA, Kranzler HR, Gelernter J (2017) Ancestry-specific and sex-specific risk alleles identified in a genome-wide gene-by-alcohol dependence interaction study of risky sexual behaviors. Am J Med Genet B Neuropsychiatr Genet 174(8):846–853.  https://doi.org/10.1002/ajmg.b.32604 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roessner U, Bowne J (2009) What is metabolomics all about? BioTechniques 46(5):363–365.  https://doi.org/10.2144/000113133 CrossRefPubMedGoogle Scholar
  16. 16.
    Yao JK, Reddy RD (2005) Metabolic investigation in psychiatric disorders. Mol Neurobiol 31(1-3):193–203.  https://doi.org/10.1385/mn:31:1-3:193 CrossRefPubMedGoogle Scholar
  17. 17.
    Mellon SH, Gautam A, Hammamieh R, Jett M, Wolkowitz OM (2018) Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol Psychiatry 83(10):866–875.  https://doi.org/10.1016/j.biopsych.2018.02.007 CrossRefPubMedGoogle Scholar
  18. 18.
    Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, Cao Y, Wang X et al (2013) Potential metabolite markers of schizophrenia. Mol Psychiatry 18(1):67–78.  https://doi.org/10.1038/mp.2011.131 CrossRefPubMedGoogle Scholar
  19. 19.
    van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V, Melo van Lent D, Tynkkynen J et al (2018) Circulating metabolites and general cognitive ability and dementia: Evidence from 11 cohort studies. Alzheimers Dement 14(6):707–722.  https://doi.org/10.1016/j.jalz.2017.11.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Smith GD, Ebrahim S (2003) ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32(1):1–22CrossRefGoogle Scholar
  21. 21.
    Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163.  https://doi.org/10.1002/sim.3034 CrossRefPubMedGoogle Scholar
  22. 22.
    Polimanti R, Amstadter AB, Stein MB, Almli LM, Baker DG, Bierut LJ, Bradley B, Farrer LA et al (2017) A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder. Genome Med 9(1):99.  https://doi.org/10.1186/s13073-017-0491-4 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Polimanti R, Gelernter J, Stein DJ (2018) Genetically determined schizophrenia is not associated with impaired glucose homeostasis. Schizophr Res 195:286–289.  https://doi.org/10.1016/j.schres.2017.10.033 CrossRefPubMedGoogle Scholar
  24. 24.
    Ravera S, Carrasco N, Gelernter J, Polimanti R (2018) Phenomic impact of genetically-determined euthyroid function and molecular differences between thyroid disorders. J Clin Med 7(10).  https://doi.org/10.3390/jcm7100296 CrossRefGoogle Scholar
  25. 25.
    Gage SH, Smith GD, Zammit S, Hickman M, Munafò MR (2014) Using Mendelian randomisation to infer causality in depression and anxiety research. Depress Anxiety 30(12):1185–1193.  https://doi.org/10.1002/da.22150 CrossRefGoogle Scholar
  26. 26.
    Sekula P, Del Greco MF, Pattaro C, Köttgen A (2016) Mendelian randomization as an approach to assess causality using observational data. J Am Soc Nephrol 27(11):3253–3265.  https://doi.org/10.1681/asn.2016010098 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lawlor DA (2016) Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int J Epidemiol 45(3):908–915.  https://doi.org/10.1093/ije/dyw127 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601.  https://doi.org/10.1136/bmj.k601 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Konjevod M, Tudor L, Svob Strac D, Nedic Erjavec G, Barbas C, Zarkovic N, Nikolac Perkovic M, Uzun S et al (2019) Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 88:181–193.  https://doi.org/10.1016/j.pnpbp.2018.07.014 CrossRefGoogle Scholar
  30. 30.
    Talbot LS, Rao MN, Cohen BE, Richards A, Inslicht SS, O’Donovan A, Maguen S, Metzler TJ et al (2015) Metabolic risk factors and posttraumatic stress disorder: the role of sleep in young, healthy adults. Psychosom Med 77(4):383–391.  https://doi.org/10.1097/PSY.0000000000000176 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Karabatsiakis A, Hamuni G, Wilker S, Kolassa S, Renu D, Kadereit S, Schauer M, Hennessy T et al (2015) Metabolite profiling in posttraumatic stress disorder. J Mol Psychiatry 3(1):2.  https://doi.org/10.1186/s40303-015-0007-3 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife.  https://doi.org/10.7554/eLife.34408
  33. 33.
    Allen NE, Sudlow C, Peakman T, Collins R (2014) UK biobank data: come and get it. Sci Transl Med 6(224):224ed224.  https://doi.org/10.1126/scitranslmed.3008601 CrossRefGoogle Scholar
  34. 34.
    Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D et al (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726):203–209.  https://doi.org/10.1038/s41586-018-0579-z CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Davis KAS, Coleman JRI, Adams M, Allen N, Breen G, Cullen B, Dickens C, Fox E et al (2018) Mental health in UK Biobank: development, implementation and results from an online questionnaire completed by 157 366 participants. B J Psych Open 4(3):83–90.  https://doi.org/10.1192/bjo.2018.12 CrossRefGoogle Scholar
  36. 36.
    Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, Vaarhorst A, Kangas AJ et al (2016) Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat Commun 7:11122.  https://doi.org/10.1038/ncomms11122 https://www.nature.com/articles/ncomms11122#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hill WD, Davies G, Harris SE, Hagenaars SP, The neuro CCWg, Davies G, Deary IJ, Debette S et al (2016) Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions. Transl Psychiatry 6:e980.  https://doi.org/10.1038/tp.2016.246 https://www.nature.com/articles/tp2016246#supplementary-information CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, Duncan L, Perry JR et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47(11):1236–1241.  https://doi.org/10.1038/ng.3406 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Patterson N, Daly MJ, Price AL et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295.  https://doi.org/10.1038/ng.3211 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF et al (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467(7311):52–58.  https://doi.org/10.1038/nature09298 CrossRefPubMedGoogle Scholar
  41. 41.
    Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74.  https://doi.org/10.1038/nature15393 CrossRefPubMedGoogle Scholar
  42. 42.
    Euesden J, Lewis CM, O'Reilly PF (2015) PRSice: Polygenic Risk Score software. Bioinformatics 31(9):1466–1468.  https://doi.org/10.1093/bioinformatics/btu848 CrossRefPubMedGoogle Scholar
  43. 43.
    Dastani Z, Hivert MF, Timpson N, Perry JR, Yuan X, Scott RA, Henneman P, Heid IM et al (2012) Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 8(3):e1002607.  https://doi.org/10.1371/journal.pgen.1002607 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Davey Smith G, Davies NM, Dimou N, Egger M, Gallo V, Golub R, Higgins JPT, Langenberg C, et al. (2019) STROBE-MR: Guidelines for strengthening the reporting of Mendelian randomization studies. PeerJ Preprints 7:e27857v27851. doi: https://doi.org/10.7287/peerj.preprints.27857v1
  45. 45.
    Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525.  https://doi.org/10.1093/ije/dyv080 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hartwig FP, Davey Smith G, Bowden J (2017) Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 46(6):1985–1998.  https://doi.org/10.1093/ije/dyx102 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314.  https://doi.org/10.1002/gepi.21965 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Verbanck M, Chen CY, Neale B, Do R (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698.  https://doi.org/10.1038/s41588-018-0099-7 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sterne JA, Davey Smith G (2001) Sifting the evidence—what’s wrong with significance tests? BMJ 322(7280):226–231.  https://doi.org/10.1136/bmj.322.7280.226 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Li J, Wang L, Jiang T, Wang J, Li X, Liu X, Wang C, Teng Z et al (2016) eSNPO: An eQTL-based SNP Ontology and SNP functional enrichment analysis platform. Sci Rep 6:30595.  https://doi.org/10.1038/srep30595 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Supek F, Bosnjak M, Skunca N, Smuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6(7):e21800.  https://doi.org/10.1371/journal.pone.0021800 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kapfhammer HP (2018) Acute and long-term mental and physical sequelae in the aftermath of traumatic exposure—some remarks on “the body keeps the score”. Psychiatr Danub 30(3):254–272.  https://doi.org/10.24869/psyd.2018.254 CrossRefPubMedGoogle Scholar
  53. 53.
    Westergaard N, Waagepetersen HS, Belhage B, Schousboe A (2017) Citrate, a ubiquitous key metabolite with regulatory function in the CNS. Neurochem Res 42(6):1583–1588.  https://doi.org/10.1007/s11064-016-2159-7 CrossRefPubMedGoogle Scholar
  54. 54.
    Iacobazzi V, Infantino V (2014) Citrate—new functions for an old metabolite. Biol Chem.  https://doi.org/10.1515/hsz-2013-0271 CrossRefGoogle Scholar
  55. 55.
    Setoyama D, Kato TA, Hashimoto R, Kunugi H, Hattori K, Hayakawa K, Sato-Kasai M, Shimokawa N et al (2016) Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients—a multicenter pilot analysis. PLoS One 11(12):e0165267–e0165267.  https://doi.org/10.1371/journal.pone.0165267 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Luo Z, Lei H, Sun Y, Liu X, Su D-F (2015) Orosomucoid, an acute response protein with multiple modulating activities. J Physiol Biochem 71(2):329–340.  https://doi.org/10.1007/s13105-015-0389-9 CrossRefPubMedGoogle Scholar
  57. 57.
    Lee YS, Choi JW, Hwang I, Lee JW, Lee JH, Kim AY, Huh JY, Koh YJ et al (2010) Adipocytokine orosomucoid integrates inflammatory and metabolic signals to preserve energy homeostasis by resolving immoderate inflammation. J Biol Chem 285(29):22174–22185.  https://doi.org/10.1074/jbc.M109.085464 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Jo M, Kim JH, Song GJ, Seo M, Hwang EM, Suk K (2017) Astrocytic orosomucoid-2 modulates microglial activation and neuroinflammation. J Neurosci 37(11):2878–2894.  https://doi.org/10.1523/jneurosci.2534-16.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Vasile F, Dossi E, Rouach N (2017) Human astrocytes: structure and functions in the healthy brain. Brain Struct Funct 222(5):2017–2029.  https://doi.org/10.1007/s00429-017-1383-5 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Harley J, Roberts R, Joyce P, Mulder R, Luty S, Frampton C, Kennedy M (2009) Orosomucoid influences the response to antidepressants in major depressive disorder. J Psychopharmacol 24(4):531–535.  https://doi.org/10.1177/0269881109105101 CrossRefPubMedGoogle Scholar
  61. 61.
    Lohr JB, Palmer BW, Eidt CA, Aailaboyina S, Mausbach BT, Wolkowitz OM, Thorp SR, Jeste DV (2015) Is post-traumatic stress disorder associated with premature senescence? A review of the literature. Am J Geriatr Psychiatry 23(7):709–725.  https://doi.org/10.1016/j.jagp.2015.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Umpleby AM, Shojaee-Moradie F, Fielding B, Li X, Marino A, Alsini N, Isherwood C, Jackson N et al (2017) Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets. Clin Sci (Lond) 131(21):2561–2573.  https://doi.org/10.1042/cs20171208 CrossRefGoogle Scholar
  63. 63.
    Nakajima K, Tanaka A (2018) Atherogenic postprandial remnant lipoproteins; VLDL remnants as a causal factor in atherosclerosis. Clin Chim Acta 478:200–215.  https://doi.org/10.1016/j.cca.2017.12.039 CrossRefPubMedGoogle Scholar
  64. 64.
    Mora S, Otvos JD, Rosenson RS, Pradhan A, Buring JE, Ridker PM (2010) Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women. Diabetes.  https://doi.org/10.2337/db09-1114 CrossRefGoogle Scholar
  65. 65.
    Cohen BE, Edmondson D, Kronish IM (2015) State of the art review: depression, stress, anxiety, and cardiovascular disease. Am J Hypertens 28(11):1295–1302.  https://doi.org/10.1093/ajh/hpv047 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Vancampfort D, Rosenbaum S, Ward PB, Steel Z, Lederman O, Lamwaka AV, Richards JW, Stubbs B (2016) Type 2 diabetes among people with posttraumatic stress disorder: systematic review and meta-analysis. Psychosom Med 78(4):465–473.  https://doi.org/10.1097/psy.0000000000000297 CrossRefPubMedGoogle Scholar
  67. 67.
    Shan L, Bao A-M, Swaab DF (2017) Changes in histidine decarboxylase, histamine N-methyltransferase and histamine receptors in neuropsychiatric disorders. In: Hattori Y, Seifert R (eds) Histamine and Histamine Receptors in Health and Disease. Springer International Publishing, Cham, pp. 259–276.  https://doi.org/10.1007/164_2016_125 CrossRefGoogle Scholar
  68. 68.
    Fox ME, Wightman RM (2017) Contrasting regulation of catecholamine neurotransmission in the behaving brain: pharmacological insights from an electrochemical perspective. Pharmacol Rev 69(1):12.  https://doi.org/10.1124/pr.116.012948 CrossRefPubMedGoogle Scholar
  69. 69.
    Raio CM, Phelps EA (2014) The influence of acute stress on the regulation of conditioned fear. Neurobiol Stress 1:134–146.  https://doi.org/10.1016/j.ynstr.2014.11.004 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Gautam A, D'Arpa P, Donohue DE, Muhie S, Chakraborty N, Luke BT, Grapov D, Carroll EE et al (2015) Acute and chronic plasma metabolomic and liver transcriptomic stress effects in a mouse model with features of post-traumatic stress disorder. PLoS One 10(1):e0117092.  https://doi.org/10.1371/journal.pone.0117092 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Gelernter J, Sun N, Polimanti R, Pietrzak R, Levey DF, Bryois J, Lu Q, Hu Y et al (2019) Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat Neurosci.  https://doi.org/10.1038/s41593-019-0447-7 CrossRefGoogle Scholar
  72. 72.
    Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen C-Y, Choi KW, Coleman JRI, Dalvie S et al (2018) Largest genome-wide association study for PTSD identifies genetic risk loci in European and African ancestries and implicates novel biological pathways. bioRxiv.  https://doi.org/10.1101/458562

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychiatryYale School of Medicine and VA CT Healthcare CenterWest HavenUSA
  2. 2.Department of PsychiatryUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
  3. 3.Genetics Division, Department of Morphology and GeneticsUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
  4. 4.MRC Unit on Risk & Resilience in Mental Disorders, Department of PsychiatryUniversity of Cape TownCape TownSouth Africa
  5. 5.Department of Psychiatry, School of MedicineUniversity of California San DiegoLa JollaUSA
  6. 6.Psychiatry ServiceVeterans Affairs San Diego Healthcare SystemSan DiegoUSA
  7. 7.Departments of Genetics and NeuroscienceYale University School of MedicineNew HavenUSA

Personalised recommendations