Advertisement

Molecular Approaches for the Treatment of Pompe Disease

  • Anita Sofia Bellotti
  • Luca Andreoli
  • Dario Ronchi
  • Nereo Bresolin
  • Giacomo P. Comi
  • Stefania CortiEmail author
Article

Abstract

Glycogen storage disease type II (GSDII, Pompe disease) is a rare metabolic disorder caused by a deficiency of acid alpha-glucosidase (GAA), an enzyme localized within lysosomes that is solely responsible for glycogen degradation in this compartment. The manifestations of GSDII are heterogeneous but are classified as early or late onset. The natural course of early-onset Pompe disease (EOPD) is severe and rapidly fatal if left untreated. Currently, one therapeutic approach, namely, enzyme replacement therapy, is available, but advances in molecular medicine approaches hold promise for even more effective therapeutic strategies. These approaches, which we review here, comprise splicing modification by antisense oligonucleotides, chaperone therapy, stop codon readthrough therapy, and the use of viral vectors to introduce wild-type genes. Considering the high rate at which innovations are translated from bench to bedside, it is reasonable to expect substantial improvements in the treatment of this illness in the foreseeable future.

Keywords

GSDII Pompe disease Alpha-glucosidase (GAA) Therapy Gene therapy Molecular therapy Antisense oligonucleotides 

Notes

Funding Information

We thank the Associazione del Centro Dino Ferrari for their support. The work was partially funded by the Ministry of Health (to N.B., G.P.C., and S.C.). The figure was modified from images from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Kishnani PS, Berger KI, Carter GT, Case LE (2017) Late-onset Pompe disease presentation, diagnosis, and management. In: A CME monographGoogle Scholar
  2. 2.
    Wokke JHJ, Escolar DM, Pestronk A, Jaffe KM, Carter GT, van den Berg L, Florence JM, Mayhew J et al (2008) Clinical features of late-onset pompe disease: a prospective cohort study. Muscle Nerve. 38(4):1236–1245.  https://doi.org/10.1002/mus.21025 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chan J, Desai AK, Kazi ZB, Corey K, Austin S, Hobson-Webb LD, Case LE, Jones HN et al (2017) The emerging phenotype of late-onset Pompe disease: a systematic literature review. Mol Genet Metab. 120(3):163–172.  https://doi.org/10.1016/j.ymgme.2016.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hirschhorn R, Reuser AJJ. Glycogen storage disease type II: acid alpha-glucosidase (acid maltase) deficiency. In: The metabolic and molecular basis of inherited disease. 8th ed. New York: McGraw-Hill; 2001:3389-3420. doi: https://doi.org/10.1036/ommbid.164
  5. 5.
    Schoser B, Laforêt P, Kruijshaar AT ME, Ploeg PA van D and AT van der, (EPOC) on behalf of the EPC (2015) Minutes of the European POmpe Consortium (EPOC) meeting. Acta Myol XXXIV:147–149 2015:141-143Google Scholar
  6. 6.
    Chien Y-H, Hwu W-L, Lee N-C (2019) Newborn screening: Taiwanese experience. Ann Transl Med 7(13):281.  https://doi.org/10.21037/atm.2019.05.47 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wens SCA, van Gelder CM, Kruijshaar ME, de Vries JM, van der Beek N, Reuser AJ, van Doorn P, van der Ploeg A et al (2013) Phenotypical variation within 22 families with Pompe disease. Orphanet J Rare Dis. 8:182.  https://doi.org/10.1186/1750-1172-8-182 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martínez M, Romero MG, Guereta LG, Cabrera M, Regojo RM, Albajara L, Couce ML, Pipaon MS (2017) Infantile-onset Pompe disease with neonatal debut: a case report and literature review. Medicine (Baltimore). 96(51):e9186.  https://doi.org/10.1097/MD.0000000000009186 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van den Hout HMP, Hop W, van Diggelen OP et al (2004) The natural course of infantile Pompe’s disease: 20 original cases compared with 133 cases from the literature. Pediatrics 112(2):332–340.  https://doi.org/10.1542/peds.112.2.332 CrossRefGoogle Scholar
  10. 10.
    Müller-Felber W, Horvath R, Gempel K, Podskarbi T, Shin Y, Pongratz D, Walter MC, Baethmann M et al (2007) Late onset Pompe disease: clinical and neurophysiological spectrum of 38 patients including long-term follow-up in 18 patients. Neuromuscul Disord. 17(9-10):698–706.  https://doi.org/10.1016/j.nmd.2007.06.002 CrossRefGoogle Scholar
  11. 11.
    van der Beek NAME, Hagemans MLC, van der Ploeg AT, Reuser AJJ, van Doorn PA. Pompe disease (glycogen storage disease type II): clinical features and enzyme replacement therapy. Acta Neurol Belg. 2006;106(2):82-86. http://www.ncbi.nlm.nih.gov/pubmed/16898258. Accessed May 6, 2019.
  12. 12.
    Wasserstein MP, Caggana M, Bailey SM, Desnick RJ, Edelmann L, Estrella L, Holzman I, Kelly NR et al (2019) The New York pilot newborn screening program for lysosomal storage diseases: report of the first 65,000 infants. Genet Med. 21(3):631–640.  https://doi.org/10.1038/s41436-018-0129-y CrossRefGoogle Scholar
  13. 13.
    Kroos M, Hoogeveen-Westerveld M, Ploeg a NSV a NDER, Reuser AJJ (2012) The genotype–phenotype correlation in Pompe disease. Am J Med Genet 68:59–68.  https://doi.org/10.1002/ajmc.31318 CrossRefGoogle Scholar
  14. 14.
    Chen M, Zhang L, Quan S. Enzyme replacement therapy for infantile-onset Pompe disease (review). 2017;(11). doi: https://doi.org/10.1002/14651858.CD011539. pub2.www.cochranelibrary.com
  15. 15.
    Lim JA, Li L, Raben N (2014) Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 6(JUL):177.  https://doi.org/10.3389/fnagi.2014.00177 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ripolone M, Violano R, Ronchi D, Mondello S, Nascimbeni A, Colombo I, Fagiolari G, Bordoni A et al (2018) Effects of short-to-long term enzyme replacement therapy (ERT) on skeletal muscle tissue in late onset Pompe disease (LOPD). Neuropathol Appl Neurobiol. 44(5):449–462.  https://doi.org/10.1111/nan.12414 CrossRefGoogle Scholar
  17. 17.
    Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, Leslie N, Levine J et al (2007) Recombinant human acid α-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology. 68(2):99–109.  https://doi.org/10.1212/01.wnl.0000251268.41188.04 CrossRefGoogle Scholar
  18. 18.
    Schoser B, Stewart A, Kanters S, Hamed A, Jansen J, Chan K, Karamouzian M, Toscano A (2017) Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and meta-analysis. J Neurol. 264(4):621–630.  https://doi.org/10.1007/s00415-016-8219-8 CrossRefGoogle Scholar
  19. 19.
    van der Ploeg AT, Kruijshaar ME, Toscano A, Laforêt P, Angelini C, Lachmann RH, Pascual Pascual SI, Roberts M et al (2017) European consensus for starting and stopping enzyme replacement therapy in adult patients with Pompe disease: a 10-year experience. Eur J Neurol. 24(6):768–e31.  https://doi.org/10.1111/ene.13285 CrossRefGoogle Scholar
  20. 20.
    Kanters TA, van der Ploeg AT, Kruijshaar ME, Rizopoulos D, Redekop WK, Rutten-van Mӧlken M, Hakkaart-van Roijen L (2017) Cost-effectiveness of enzyme replacement therapy with alglucosidase alfa in adult patients with Pompe disease. Orphanet J Rare Dis. 12(1):179.  https://doi.org/10.1186/s13023-017-0731-0 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Parini R, De Lorenzo P, Dardis A et al (2018) Long term clinical history of an Italian cohort of infantile onset Pompe disease treated with enzyme replacement therapy. Orphanet J Rare Dis. 13(1):32.  https://doi.org/10.1186/s13023-018-0771-0 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Prater SN, Banugaria SG, DeArmey SM, Botha EG, Stege EM, Case LE, Jones HN, Phornphutkul C et al (2012) The emerging phenotype of long-term survivors with infantile Pompe disease. Genet Med. 14(9):800–810.  https://doi.org/10.1038/gim.2012.44 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lim J-A, Sun B, Puertollano R, Raben N (May 2018) Therapeutic benefit of autophagy modulation in Pompe disease. Mol Ther.  https://doi.org/10.1016/J.YMTHE.2018.04.025 CrossRefGoogle Scholar
  24. 24.
    Van der Ploeg AT, Reuser AJ (2008) Pompe’s disease. Lancet. 372(9646):1342–1353.  https://doi.org/10.1016/S0140-6736(08)61555-X CrossRefGoogle Scholar
  25. 25.
    Parenti G, Andria G, Valenzano KJ (2015) Pharmacological chaperone therapy: preclinical development, clinical translation, and prospects for the treatment of lysosomal storage disorders. Mol Ther. 23(7):1138–1148.  https://doi.org/10.1038/mt.2015.62 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lin N, Huang J, Violante S, Orsini JJ, Caggana M, Hughes EE, Stevens C, DiAntonio L et al (2017) Liquid chromatography-tandem mass spectrometry assay of leukocyte acid α-glucosidase for post-newborn screening evaluation of Pompe disease. Clin Chem. 63(4):842–851.  https://doi.org/10.1373/clinchem.2016.259036 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fukuhara Y, Fuji N, Yamazaki N, Hirakiyama A, Kamioka T, Seo JH, Mashima R, Kosuga M et al (2018) A molecular analysis of the GAA gene and clinical spectrum in 38 patients with Pompe disease in Japan. Mol Genet Metab Reports. 14:3–9.  https://doi.org/10.1016/J.YMGMR.2017.10.009 CrossRefGoogle Scholar
  28. 28.
    Hordeaux J, Dubreil L, Robveille C, Deniaud J, Pascal Q, Dequéant B, Pailloux J, Lagalice L et al (2017) Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathol Commun. 5(1):66.  https://doi.org/10.1186/s40478-017-0464-2 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhu Y, Li X, Mcvie-Wylie A et al (2005) Carbohydrate-remodelled acid α-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice. Biochem J. 389(3):619–628.  https://doi.org/10.1042/BJ20050364 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhu Y, Jiang J-L, Gumlaw NK, Zhang J, Bercury SD, Ziegler RJ, Lee K, Kudo M et al (2009) Glycoengineered acid α-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther. 17(6):954–963.  https://doi.org/10.1038/mt.2009.37 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pena LDM, Barohn RJ, Byrne BJ, Desnuelle C, Goker-Alpan O, Ladha S, Laforêt P, Mengel KE et al (2019) Safety, tolerability, pharmacokinetics, pharmacodynamics, and exploratory efficacy of the novel enzyme replacement therapy avalglucosidase alfa (neoGAA) in treatment-naïve and alglucosidase alfa-treated patients with late-onset Pompe disease: a phase 1, open-label, multicenter, multinational, ascending dose study. Neuromuscul Disord. 29(3):167–186.  https://doi.org/10.1016/J.NMD.2018.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    NCT02782741.Google Scholar
  33. 33.
    Gotschall R, Xu S, Lun Y et al (2015) Novel recombinant human acid α-glucosidase with optimal glycosylation is significantly better than standard of care enzyme replacement for glycogen clearance in skeletal muscles of GAA knock-out mice. Mol Genet Metab. 114(2):S49.  https://doi.org/10.1016/J.YMGME.2014.12.096 CrossRefGoogle Scholar
  34. 34.
    Xu S, Lun Y, Frascella M et al (2019) Improved efficacy of a next-generation ERT in murine Pompe disease. JCI Insight 4(5).  https://doi.org/10.1172/jci.insight.125358
  35. 35.
    Clemens PR, Mozaffar T, Schoser B et al (2019) Safety and efficacy of advanced and targeted acid α-glucosidase (AT-GAA) (ATB200/AT2221) in ERT-switch nonambulatory patients with Pompe disease: preliminary results from the ATB200-02 trial. Mol Genet Metab. 126(2):S40–S41.  https://doi.org/10.1016/J.YMGME.2018.12.084 CrossRefGoogle Scholar
  36. 36.
    Kishnani P, Schoser B, Bratkovic D et al (2019) First-in-human study of advanced and targeted acid α-glucosidase (AT-GAA) (ATB200/AT2221) in patients with Pompe disease: preliminary functional assessment results from the ATB200-02 trial. Mol Genet Metab. 126(2):S86.  https://doi.org/10.1016/J.YMGME.2018.12.212 CrossRefGoogle Scholar
  37. 37.
    Schoser B, Bratkovic D, Byrne BJ et al (2019) Preliminary patient-reported outcomes and safety of advanced and targeted acid α-glucosidase AT-GAA (ATB200/AT2221) in patients with Pompe disease from the ATB200-02 trial. Mol Genet Metab. 126(2):S132–S133.  https://doi.org/10.1016/J.YMGME.2018.12.340 CrossRefGoogle Scholar
  38. 38.
    NCT03729362.Google Scholar
  39. 39.
    Yi H, Sun T, Armstrong D, Borneman S, Yang C, Austin S, Kishnani PS, Sun B (2017) Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease. J Mol Med. 95(5):513–521.  https://doi.org/10.1007/s00109-017-1505-9 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kishnani P, Lachmann R, Mozaffar T et al (2019) Safety and efficacy of VAL-1221, a novel fusion protein targeting cytoplasmic glycogen, in patients with late-onset Pompe disease. Mol Genet Metab. 126(2):S85–S86.  https://doi.org/10.1016/J.YMGME.2018.12.211 CrossRefGoogle Scholar
  41. 41.
    Boustany RMN (2013) Lysosomal storage diseases - the horizon expands. Nat Rev Neurol. 9(10):583–598.  https://doi.org/10.1038/nrneurol.2013.163 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Okumiya T, Kroos MA, Van Vliet L, Takeuchi H, Van der Ploeg AT, Reuser AJJ (2007) Chemical chaperones improve transport and enhance stability of mutant α-glucosidases in glycogen storage disease type II. Mol Genet Metab. 90(1):49–57.  https://doi.org/10.1016/j.ymgme.2006.09.010 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kishnani P, Tarnopolsky M, Roberts M, Sivakumar K, Dasouki M, Dimachkie MM, Finanger E, Goker-Alpan O et al (2017) Duvoglustat HCl increases systemic and tissue exposure of active acid α-glucosidase in Pompe patients co-administered with alglucosidase α. Mol Ther. 25(5):1199–1208.  https://doi.org/10.1016/j.ymthe.2017.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    D’Alonzo D, De Fenza M, Porto C et al (2017) N-butyl-l-deoxynojirimycin (l-NBDNJ): synthesis of an allosteric enhancer of α-glucosidase activity for the treatment of Pompe disease. J Med Chem. 60(23):9462–9469.  https://doi.org/10.1021/acs.jmedchem.7b00646 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang X, Gregory-Evans CY (2015) Nonsense suppression therapies in ocular genetic diseases. Cell Mol Life Sci. 72(10):1931–1938.  https://doi.org/10.1007/s00018-015-1843-0 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Miller JN, Pearce DA (2014) Nonsense-mediated decay in genetic disease: friend or foe? Mutat Res Mutat Res. 762:52–64.  https://doi.org/10.1016/j.mrrev.2014.05.001 CrossRefGoogle Scholar
  47. 47.
    Ortolano S (2016) Small molecules. J Inborn Errors Metab Screen. 4:232640981666629.  https://doi.org/10.1177/2326409816666297 CrossRefGoogle Scholar
  48. 48.
    Deck DH, Winston LG (2015) Aminoglycosides & spectinomycin. In: Basic & Clinical Pharmacology, pp. 799–806Google Scholar
  49. 49.
    Birch KE, Quinlivan RM, Morris GE (2013) Cell models for McArdle disease and aminoglycoside-induced read-through of a premature termination codon. Neuromuscul Disord. 23(1):43–51.  https://doi.org/10.1016/j.nmd.2012.06.348 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2(4):467-469. http://www.ncbi.nlm.nih.gov/pubmed/8597960. Accessed May 6, 2019.CrossRefGoogle Scholar
  51. 51.
    Translarna | European Medicines Agency.Google Scholar
  52. 52.
    Becker JA, Vlach J, Raben N et al (1998) The African origin of the common mutation in African American patients with glycogen-storage disease type II - letters to the editor. Am J Med Genet. 62:991–994.  https://doi.org/10.1097/gme.0b013e3181967b88 CrossRefGoogle Scholar
  53. 53.
    What is gene therapy? - Genetics home reference - NIH.Google Scholar
  54. 54.
    Niño MY, in ’t Groen SLM, Bergsma AJ et al (2019) Extension of the Pompe mutation database by linking disease-associated variants to clinical severity. Hum Mutat:humu.23854.  https://doi.org/10.1002/humu.23854 CrossRefGoogle Scholar
  55. 55.
    Srivastava A, Carter BJ (2017) AAV Infection: Protection from Cancer. Hum Gene Ther. 28(4):323–327.  https://doi.org/10.1089/hum.2016.147 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun B, Zhang H, Franco LM, Young SP, Schneider A, Bird A, Amalfitano A, Chen YT et al (2005) Efficacy of an adeno-associated virus 8-pseudotyped vector in glycogen storage disease type II. Mol Ther. 11(1):57–65.  https://doi.org/10.1016/j.ymthe.2004.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R, Marais T, Barkats M (2013) Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther. 21(2):282–290.  https://doi.org/10.1038/mt.2012.261 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    ElMallah MK, Falk DJ, Nayak S et al (2014) Sustained correction of motoneuron histopathology following intramuscular delivery of AAV in Pompe mice. Mol Ther. 22(4):702–712.  https://doi.org/10.1038/mt.2013.282 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Todd AG, McElroy JA, Grange RW, Fuller DD, Walter GA, Byrne BJ, Falk DJ (2015) Correcting neuromuscular deficits with gene therapy in Pompe disease. Ann Neurol. 78(2):222–234.  https://doi.org/10.1002/ana.24433 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ (2016) Targeted approaches to induce immune tolerance for Pompe disease therapy. Mol Ther - Methods Clin Dev. 3:15053.  https://doi.org/10.1038/mtm.2015.53 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Pauly DF, Fraites TJ, Toma C et al (2002) Intercellular transfer of the virally derived precursor form of acid α-glucosidase corrects the enzyme deficiency in inherited cardioskeletal myopathy pompe disease. Hum Gene Ther. 12(5):527–538.  https://doi.org/10.1089/104303401300042447 CrossRefGoogle Scholar
  62. 62.
    Fraites TJ, Schleissing MR, Shanely RA et al (2002) Correction of the enzymatic and functional deficits in a model of pompe disease using adeno-associated virus vectors. Mol Ther 5(5 I):571–578.  https://doi.org/10.1006/mthe.2002.0580 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Martin-Touaux E, Puech JP, Château D, Emiliani C, Kremer EJ, Raben N, Tancini B, Orlacchio A, Kahn A, Poenaru L Muscle as a putative producer of acid alpha-glucosidase for glycogenosis type II gene therapy. Hum Mol Genet. 2002;11(14):1637-1645. http://www.ncbi.nlm.nih.gov/pubmed/12075008. Accessed May 7, 2019.CrossRefGoogle Scholar
  64. 64.
    Zaretsky JZ, Candotti F, Boerkoel C, Adams EM, Yewdell JW, Blaese RM, Plotz PH (1997) Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts results in phenotypic spread of the genotypic correction by both secretion and fusion. Hum Gene Ther. 8(13):1555–1563.  https://doi.org/10.1089/hum.1997.8.13-1555 CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Amalfitano A, McVie-Wylie AJ, Hu H, Dawson TL, Raben N, Plotz P, Chen YT (2002) Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-glucosidase. Proc Natl Acad Sci. 96(16):8861–8866.  https://doi.org/10.1073/pnas.96.16.8861 CrossRefGoogle Scholar
  66. 66.
    Ding E, Hu H, Hodges BL, Migone F, Serra D, Xu F, Chen YT, Amalfitano A (2002) Efficacy of gene therapy for a prototypical lysosomal storage disease (GSD-II) is critically dependent on vector dose, transgene promoter, and the tissues targeted for vector transduction. Mol Ther. 5(4):436–446.  https://doi.org/10.1006/mthe.2002.0563 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mah C, Pacak CA, Cresawn KO, Deruisseau LR, Germain S, Lewis MA, Cloutier DA, Fuller DD et al (2007) Physiological correction of pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther. 15(3):501–507.  https://doi.org/10.1038/sj.mt.6300100 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Rucker M, Fraites TJ, Porvasnik SL et al (2004) Rescue of enzyme deficiency in embryonic diaphragm in a mouse model of metabolic myopathy: Pompe disease. Development. 131(12):3007–3019.  https://doi.org/10.1242/dev.01169 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pauly DF, Johns DC, Matelis LA, Lawrence JH, Byrne BJ, Kessler PD (1998) Complete correction of acid alpha-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle. Gene Ther. 5(4):473–480.  https://doi.org/10.1038/sj.gt.3300609 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Cresawn KO, Fraites TJ, Wasserfall C, Atkinson M, Lewis M, Porvasnik S, Liu C, Mah C et al (2005) Impact of humoral immune response on distribution and efficacy of recombinant adeno-associated virus-derived acid α-glucosidase in a model of glycogen storage disease type II. Hum Gene Ther. 16(1):68–80.  https://doi.org/10.1089/hum.2005.16.68 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mah C, Cresawn KO, Fraites TJ et al (2005) Sustained correction of glycogen storage disease type II using adeno-associated virus serotype 1 vectors. Gene Ther. 12(18):1405–1409.  https://doi.org/10.1038/sj.gt.3302550 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Byrne BJ, Falk DJ, Pacak CA, Nayak S, Herzog RW, Elder ME, Collins SW, Conlon TJ et al (2011) Pompe disease gene therapy. Hum Mol Genet. 20(R1):R61–R68.  https://doi.org/10.1093/hmg/ddr174 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Pacak CA, Mah CS, Thattaliyath BD et al (2006) Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 99(4).  https://doi.org/10.1161/01.RES.0000237661.18885.f6
  74. 74.
    Sun B, Young SP, Li P, di C, Brown T, Salva MZ, Li S, Bird A et al (2008) Correction of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene therapy. Mol Ther. 16(8):1366–1371.  https://doi.org/10.1038/mt.2008.133 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mah C, Fraites TJ, Cresawn KO, Zolotukhin I, Lewis MA, Byrne BJ (2004) A new method for recombinant adeno-associated virus vector delivery to murine diaphragm. Mol Ther. 9(3):458–463.  https://doi.org/10.1016/j.ymthe.2004.01.006 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Mah CS, Falk DJ, Germain SA et al (2010) Gel-mediated delivery of AAV1 vectors corrects ventilatory function in Pompe mice with established disease. Mol Ther. 18(3):502–510.  https://doi.org/10.1038/mt.2009.305 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Fuller M, Duplock S, Turner C, Davey P, Brooks DA, Hopwood JJ, Meikle PJ (2012) Mass spectrometric quantification of glycogen to assess primary substrate accumulation in the Pompe mouse. Anal Biochem. 421(2):759–763.  https://doi.org/10.1016/j.ab.2011.12.026 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bijvoet AGA, Van Hirtum H, Vermey M et al (1999) Pathological features of glycogen storage disease type II highlighted in the knockout mouse model. J Pathol. 189(3):416–424.  https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<416::AID-PATH445>3.0.CO;2-6 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Fuller DD, ElMallah MK, Smith BK, Corti M, Lawson LA, Falk DJ, Byrne BJ (2013) The respiratory neuromuscular system in Pompe disease. Respir Physiol Neurobiol. 189(2):241–249.  https://doi.org/10.1016/j.resp.2013.06.007 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Winkel LPF, Van den Hout JMP, Kamphoven JHJ et al (2004) Enzyme replacement therapy in late-onset Pompe’s disease: a three-year follow-up. Ann Neurol. 55(4):495–502.  https://doi.org/10.1002/ana.20019 CrossRefGoogle Scholar
  81. 81.
    DeRuisseau LR, Fuller DD, Qiu K, DeRuisseau K, Donnelly WH Jr, Mah C, Reier PJ, Byrne BJ (2009) Neural deficits contribute to respiratory insufficiency in Pompe disease. Proc Natl Acad Sci. 106(23):9419–9424.  https://doi.org/10.1073/pnas.0902534106 CrossRefGoogle Scholar
  82. 82.
    Ebbink BJ, Poelman E, Aarsen FK et al (2018) Classic infantile Pompe patients approaching adulthood: a cohort study on consequences for the brain. Dev Med Child Neurol. 1.  https://doi.org/10.1111/dmcn.13740 CrossRefGoogle Scholar
  83. 83.
    Mcintosh PT, Hobson-webb LD, Kazi ZB et al (2018) Neuroimaging findings in infantile Pompe patients treated with enzyme replacement therapy. Mol Genet Metab. 123(2):85–91.  https://doi.org/10.1016/j.ymgme.2017.10.005 CrossRefGoogle Scholar
  84. 84.
    Sun B, Zhang H, Benjamin DK et al (2006) Enhanced efficacy of an AAV vector encoding chimeric, highly secreted acid alpha-glucosidase in glycogen storage disease type II. Mol Ther. 14(6):822–830.  https://doi.org/10.1016/j.ymthe.2006.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Qiu K, Falk DJ, Reier PJ, Byrne BJ, Fuller DD (2012) Spinal delivery of AAV vector restores enzyme activity and increases ventilation in Pompe mice. Mol Ther. 20(1):21–27.  https://doi.org/10.1038/mt.2011.214 CrossRefGoogle Scholar
  86. 86.
    Hudry E, Vandenberghe LH (2019) Review therapeutic AAV gene transfer to the nervous system: a clinical reality. Neuron. 101(5):839–862.  https://doi.org/10.1016/j.neuron.2019.02.017 CrossRefGoogle Scholar
  87. 87.
    Kiang A, Hartman ZC, Liao S, Xu F, Serra D, Palmer DJ, Ng P, Amalfitano A (2006) Fully deleted adenovirus persistently expressing GAA accomplishes long-term skeletal muscle glycogen correction in tolerant and nontolerant GSD-II mice. Mol Ther. 13(1):127–134.  https://doi.org/10.1016/j.ymthe.2005.08.006 CrossRefGoogle Scholar
  88. 88.
    Tarantal AF, Lee CCI (2010) Long-term luciferase expression monitored by bioluminescence imaging after adeno-associated virus-mediated fetal gene delivery in rhesus monkeys (Macaca mulatta). Hum Gene Ther. 21(2):143–148.  https://doi.org/10.1089/hum.2009.126 CrossRefGoogle Scholar
  89. 89.
    Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL, Miller AD, Chamberlain JS (2004) Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther. 10(4):671–678.  https://doi.org/10.1016/j.ymthe.2004.07.016 CrossRefGoogle Scholar
  90. 90.
    Falk DJ, Mah CS, Soustek MS, Lee KZ, Elmallah MK, Cloutier DA, Fuller DD, Byrne BJ (2013) Intrapleural administration of AAV9 improves neural and cardiorespiratory function in Pompe disease. Mol Ther. 21(9):1661–1667.  https://doi.org/10.1038/mt.2013.96 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Falk DJ, Todd AG, Lee S et al (2015) Peripheral nerve and neuromuscular junction pathology in Pompe disease. Hum Mol Genet. 24(3):625–636.  https://doi.org/10.1093/hmg/ddu476 CrossRefGoogle Scholar
  92. 92.
    Conlon TJ, Mah CS, Pacak CA, Rucker Henninger MB, Erger KE, Jorgensen ML, Lee CC, Tarantal AF et al (2016) Transfer of therapeutic genes into fetal rhesus monkeys using recombinant adeno-associated type I viral vectors. Hum Gene Ther Clin Dev. 27(4):152–159.  https://doi.org/10.1089/humc.2016.119 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Pacak CA, Sakai Y, Thattaliyath BD, Mah CS, Byrne BJ (2008) Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet Vaccines Ther. 6:13.  https://doi.org/10.1186/1479-0556-6-13 CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Keeler AM, Zieger M, Todeasa SH et al (2018) Systemic Delivery of AAVB1- GAA clears glycogen and prolongs survival in a mouse model of Pompe disease. Hum Gene Ther:hum.2018.016.  https://doi.org/10.1089/hum.2018.016 CrossRefGoogle Scholar
  95. 95.
    Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. 27(1):59–65.  https://doi.org/10.1038/nbt.1515 CrossRefGoogle Scholar
  96. 96.
    Samaranch L, Salegio EA, San Sebastian W, Kells AP, Foust KD, Bringas JR, Lamarre C, Forsayeth J et al (2012) Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates. Hum Gene Ther. 23(4):382–389.  https://doi.org/10.1089/hum.2011.200 CrossRefGoogle Scholar
  97. 97.
    Towne C, Schneider BL, Kieran D, Redmond DE, Aebischer P (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther. 17(1):141–146.  https://doi.org/10.1038/gt.2009.119 CrossRefGoogle Scholar
  98. 98.
    Kaspar BK, Lladó J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science (80- ) 301(5634):839–842.  https://doi.org/10.1126/science.1086137 CrossRefGoogle Scholar
  99. 99.
    Gransee HM, Zhan W-Z, Sieck GC, Mantilla CB (2013) Targeted delivery of TrkB receptor to phrenic motoneurons enhances functional recovery of rhythmic phrenic activity after cervical spinal hemisection. PLoS One. 8(5):e64755.  https://doi.org/10.1371/journal.pone.0064755 CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Yuasa K, Sakamoto M, Miyagoe-Suzuki Y, Tanouchi A, Yamamoto H, Li J, Chamberlain JS, Xiao X et al (2002) Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enhanced immune response against the transgene product. Gene Ther. 9(23):1576–1588.  https://doi.org/10.1038/sj.gt.3301829 CrossRefGoogle Scholar
  101. 101.
    Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, Chamberlain JS (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med. 10(8):828–834.  https://doi.org/10.1038/nm1085 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sun B, Li S, Bird A, Yi H, Kemper A, Thurberg BL, Koeberl DD (2010) Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease. J Gene Med. 12(11):881–891.  https://doi.org/10.1002/jgm.1511 CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Qin SX, Cobbold S, Benjamin R, Waldmann H (1989) Induction of classical transplantation tolerance in the adult. J Exp Med. 169(3):779–794CrossRefGoogle Scholar
  104. 104.
    Kuperus E, Kruijshaar ME, Wens SCA, de Vries JM, Favejee MM, van der Meijden J, Rizopoulos D, Brusse E et al (2017) Long-term benefit of enzyme replacement therapy in Pompe disease: a 5-year prospective study. Neurology. 89(23):2365–2373.  https://doi.org/10.1212/WNL.0000000000004711 CrossRefGoogle Scholar
  105. 105.
    Han S, Li S, Brooks ED, Masat E, Leborgne C, Banugaria S, Bird A, Mingozzi F et al (2015) Enhanced efficacy from gene therapy in Pompe disease using coreceptor blockade. Hum Gene Ther. 26(1):26–35.  https://doi.org/10.1089/hum.2014.115 CrossRefGoogle Scholar
  106. 106.
    Sun B, Zhang H, Franco LM, Brown T, Bird A, Schneider A, Koeberl DD (2005) Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther. 11(6):889–898.  https://doi.org/10.1016/j.ymthe.2005.01.012 CrossRefGoogle Scholar
  107. 107.
    Qin S, Wise M, Cobbold SP et al (1990) Induction of tolerance in peripheral T cells with monoclonal antibodies. Eur J Immunol. 20(12):2737–2745.  https://doi.org/10.1002/eji.1830201231 CrossRefGoogle Scholar
  108. 108.
    Benjamin RJ, Waldmann H (1986) Induction of tolerance by monoclonal antibody therapy. Nature. 320(6061):449–451.  https://doi.org/10.1038/320449a0 CrossRefGoogle Scholar
  109. 109.
    Nissler K, Pohlers D, Hückel M, Simon J, Bräuer R, Kinne RW (2004) Anti-CD4 monoclonal antibody treatment in acute and early chronic antigen induced arthritis: influence on macrophage activation. Ann Rheum Dis. 63(11):1470–1477.  https://doi.org/10.1136/ard.2003.013060 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Karim M, Feng G, Wood KJ, Bushell AR (2005) CD25+CD4+ regulatory T cells generated by exposure to a model protein antigen prevent allograft rejection: antigen-specific reactivation in vivo is critical for bystander regulation. Blood. 105(12):4871–4877.  https://doi.org/10.1182/blood-2004-10-3888 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Sun B, Banugaria SG, Prater SN, Patel TT, Fredrickson K, Ringler DJ, de Fougerolles A, Rosenberg AS et al (2014) Non-depleting anti-CD4 monoclonal antibody induces immune tolerance to ERT in a murine model of Pompe disease. Mol Genet Metab Reports. 1:446–450.  https://doi.org/10.1016/j.ymgmr.2014.08.005 CrossRefGoogle Scholar
  112. 112.
    Xu F, Ding E, Liao SX, Migone F, Dai J, Schneider A, Serra D, Chen YT et al (2004) Improved efficacy of gene therapy approaches for Pompe disease using a new, immune-deficient GSD-II mouse model. Gene Ther. 11(21):1590–1598.  https://doi.org/10.1038/sj.gt.3302314 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Bond JE, Kishnani PS, Koeberl DD (December 2017) Immunomodulatory, liver depot gene therapy for Pompe disease. Cell Immunol.  https://doi.org/10.1016/j.cellimm.2017.12.011 CrossRefGoogle Scholar
  114. 114.
    Puzzo F, Colella P, Biferi MG et al (2017) Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid alpha-glucosidase. Sci Transl Med 9(418).  https://doi.org/10.1126/scitranslmed.aam6375.Rescue
  115. 115.
    Sun B, Bird A, Young SP, Kishnani PS, Chen Y-T, Koeberl DD (2007) Enhanced response to enzyme replacement therapy in Pompe disease after the induction of immune tolerance. Am J Hum Genet. 81(5):1042–1049.  https://doi.org/10.1086/522236 CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Han S, Ronzitti G, Arnson B, Leborgne C, Li S, Mingozzi F, Koeberl D (2017) Low-dose liver-targeted gene therapy for Pompe disease enhances therapeutic efficacy of ERT via immune tolerance induction. Mol Ther Methods Clin Dev. 4(December 2016):126–136.  https://doi.org/10.1016/j.omtm.2016.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Falk DJ, Soustek MS, Todd AG, Mah CS, Cloutier DA, Kelley JS, Clement N, Fuller DD et al (2015) Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. Mol Ther - Methods Clin Dev. 2:15007.  https://doi.org/10.1038/mtm.2015.7 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Corti M, Liberati C, Smith BK, Lawson LA, Tuna IS, Conlon TJ, Coleman KE, Islam S et al (2017) Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease. Hum Gene Ther Clin Dev. 28(4):208–218.  https://doi.org/10.1089/humc.2017.146 CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Smith BK, Collins SW, Conlon TJ, Mah CS, Lawson LA, Martin AD, Fuller DD, Cleaver BD et al (2013) Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther. 24(6):630–640.  https://doi.org/10.1089/hum.2012.250 CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Smith BK, Martin AD, Lawson LA, Vernot V, Marcus J, Islam S, Shafi N, Corti M et al (2017) Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: clinical evidence of respiratory plasticity. Exp Neurol. 287(Pt 2):216–224.  https://doi.org/10.1016/j.expneurol.2016.07.013 CrossRefGoogle Scholar
  121. 121.
    Byrne BJ, Smith B, Mah C et al (2014) Phase I/II Trial of Diaphragm Delivery of Recombinant Adeno-Associated Virus Acid Alpha-Glucosidase (rAAV1-CMV- GAA) gene vector in patients with Pompe disease. Hum Gene Ther Clin Dev. 25(3):134–163.  https://doi.org/10.1089/humc.2014.2514 CrossRefGoogle Scholar
  122. 122.
    Al-Zaidy S, Pickard AS, Kotha K et al (2018) Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol 54(2):ppul.24203.  https://doi.org/10.1002/ppul.24203 CrossRefGoogle Scholar
  123. 123.
    NCT02240407.Google Scholar
  124. 124.
    Calcedo R, Wilson JM (2013) Humoral Immune Response to AAV. Front Immunol.  https://doi.org/10.3389/fimmu.2013.00341
  125. 125.
    Masat E, Pavani G, Mingozzi F (2013) Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions. Discov Med. 15(85):379–389Google Scholar
  126. 126.
    Corti M, Cleaver B, Clément N et al (2015) Evaluation of readministration of a recombinant adeno-associated virus vector expressing acid alpha-glucosidase in Pompe disease: preclinical to clinical planning. Hum Gene Ther Clin Dev. 26(3):185–193.  https://doi.org/10.1089/humc.2015.068 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Sato Y, Kobayashi H, Higuchi T et al (2015) Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient. Mol Ther - Methods Clin Dev. 2:15023.  https://doi.org/10.1038/mtm.2015.23 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Kyosen SO, Iizuka S, Kobayashi H, Kimura T, Fukuda T, Shen J, Shimada Y, Ida H et al (2010) Neonatal gene transfer using lentiviral vector for murine Pompe disease: long-term expression and glycogen reduction. Gene Ther. 17(4):521–530.  https://doi.org/10.1038/gt.2009.160 CrossRefGoogle Scholar
  129. 129.
    Lundin KE, Gissberg O, Smith CIE (2015) Oligonucleotide Therapies: The Past and the Present. Hum Gene Ther. 26(8):475–485.  https://doi.org/10.1089/hum.2015.070 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Miller CM, Harris EN Antisense oligonucleotides: treatment strategies and cellular internalization. RNA Dis (Houston, Tex), 2016 3(4).  https://doi.org/10.14800/rd.1393
  131. 131.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 11(2):125–140.  https://doi.org/10.1038/nrd3625 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Goina E, Peruzzo P, Bembi B, Dardis A, Buratti E (2017) Glycogen reduction in myotubes of late-onset Pompe disease patients using antisense technology. Mol Ther. 25(9):2117–2128.  https://doi.org/10.1016/J.YMTHE.2017.05.019 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    van der Wal E, Bergsma AJ, van Gestel TJM, in 't Groen SLM, Zaehres H, Araúzo-Bravo MJ, Schöler HR, van der Ploeg A et al (2017) GAA Deficiency in Pompe disease is alleviated by exon inclusion in iPSC-derived skeletal muscle cells. Mol Ther-Nucleic Acids. 7(June):101–115.  https://doi.org/10.1016/j.omtn.2017.03.002 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    van der Wal E, Bergsma AJ, Pijnenburg JM, van der Ploeg AT, Pijnappel WWMP (2017) Antisense oligonucleotides promote exon inclusion and correct the common c.-32-13T>G GAA splicing variant in Pompe disease. Mol Ther-Nucleic Acids. 7(June):90–100.  https://doi.org/10.1016/j.omtn.2017.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Hirschhorn R (2001) Pompe Disease. In: The online metabolic and molecular basis of inherited diseaseGoogle Scholar
  136. 136.
    Werneck LC, Lorenzoni PJ, Kay CSK et al (2013) Muscle biopsy in Pompe disease. Arq Neuropsiquiatr. 71(5):284–289.  https://doi.org/10.1590/0004-282X20130022 CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Garanto A, Chung DC, Duijkers L et al (2016) In vitro and in vivo rescue of aberrant splicing in CEP290-associated LCA by antisense oligonucleotide delivery. Hum Mol Genet 25(12):ddw118.  https://doi.org/10.1093/hmg/ddw118 CrossRefGoogle Scholar
  138. 138.
    Raben N, Wong A, Ralston E, Myerowitz R (2012) Autophagy and mitochondria in Pompe disease: nothing is so new as what has long been forgotten. Am J Med Genet C Semin Med Genet.  https://doi.org/10.1080/10810730902873927.Testing
  139. 139.
    Lim J-A, Li L, Kakhlon O, Myerowitz R, Raben N (2015) Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy. 11(2):385–402.  https://doi.org/10.1080/15548627.2015.1009779 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Lim J-A, Li L, Shirihai OS, Trudeau KM, Puertollano R, Raben N (2017) Modulation of mTOR signaling as a strategy for the treatment of Pompe disease. EMBO Mol Med 9(3):353–370.  https://doi.org/10.15252/emmm.201606547 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT)University of MilanMilanItaly
  2. 2.Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
  3. 3.Neuromuscular and Rare Diseases UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly

Personalised recommendations