Advertisement

DLK Activation Synergizes with Mitochondrial Dysfunction to Downregulate Axon Survival Factors and Promote SARM1-Dependent Axon Degeneration

  • Daniel W. Summers
  • Erin Frey
  • Lauren J. Walker
  • Jeffrey MilbrandtEmail author
  • Aaron DiAntonioEmail author
Article

Abstract

Axon degeneration is a prominent component of many neurological disorders. Identifying cellular pathways that contribute to axon vulnerability may identify new therapeutic strategies for maintenance of neural circuits. Dual leucine zipper kinase (DLK) is an axonal stress response MAP3K that is chronically activated in several neurodegenerative diseases. Activated DLK transmits an axon injury signal to the neuronal cell body to provoke transcriptional adaptations. However, the consequence of enhanced DLK signaling to axon vulnerability is unknown. We find that stimulating DLK activity predisposes axons to SARM1-dependent degeneration. Activating DLK reduces levels of the axon survival factors NMNAT2 and SCG10, accelerating their loss from severed axons. Moreover, mitochondrial dysfunction independently decreases the levels of NMNAT2 and SCG10 in axons, and in conjunction with DLK activation, leads to a dramatic loss of axonal NMNAT2 and SCG10 and evokes spontaneous axon degeneration. Hence, enhanced DLK activity reduces axon survival factor abundance and renders axons more susceptible to trauma and metabolic insult.

Keywords

DLK NMNAT2 Axon SARM1 Mitochondria STMN2 

Notes

Acknowledgements

We thank the members of the DiAntonio and Milbrandt labs for their constructive feedback in the generation of this manuscript.

Funding Information

D.W.S is supported by a Development Grant from the Muscular Dystrophy Association (MDA344513). This work was also supported by funds from the National Institutes of Health (RO1-NS65053 to A.D., RF1-AG013730 to J.M, RO1-NS087632 to J.M and A.D., and RO1-CA219866 to A.D. and J.M).

Compliance with Ethical Standards

Competing Interests

A.D and J.M are co-founders of Disarm Therapeutics and members of the Scientific Advisory Board. The authors have no additional competing financial interests.

Supplementary material

12035_2019_1796_MOESM1_ESM.docx (2.8 mb)
ESM 1 (DOCX 2825 kb)

References

  1. 1.
    Gerdts J, Summers DW, Milbrandt J, DiAntonio A (2016) Axon self-destruction: new links among SARM1, MAPKs, and NAD+ Metabolism. Neuron 89:449–460.  https://doi.org/10.1016/j.neuron.2015.12.023 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    DiAntonio A (2019) Axon degeneration: mechanistic insights lead to therapeutic opportunities for the prevention and treatment of peripheral neuropathy. Pain 160(Suppl 1):S17–S22.  https://doi.org/10.1097/j.pain.0000000000001528 CrossRefPubMedGoogle Scholar
  3. 3.
    Le Pichon CE, Meilandt WJ, Dominguez S et al (2017) Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease. Sci Transl Med 9:eaag0394.  https://doi.org/10.1126/scitranslmed.aag0394 CrossRefPubMedGoogle Scholar
  4. 4.
    Asghari Adib E, Smithson LJ, Collins CA (2018) An axonal stress response pathway: degenerative and regenerative signaling by DLK. Curr Opin Neurobiol 53:110–119.  https://doi.org/10.1016/j.conb2018.07.002 CrossRefPubMedGoogle Scholar
  5. 5.
    Farley MM, Watkins TA (2018) Intrinsic neuronal stress response pathways in injury and disease. Annu Rev Pathol Mech Dis.  https://doi.org/10.1146/annurev-pathol-012414-040354 CrossRefGoogle Scholar
  6. 6.
    Watkins TA, Wang B, Huntwork-Rodriguez S et al (2013) DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc Natl Acad Sci 110:4039–4044.  https://doi.org/10.1073/pnas.1211074110 CrossRefPubMedGoogle Scholar
  7. 7.
    Shin JE, Ha H, Kim YK, Cho Y, DiAntonio A (2019) DLK regulates a distinctive transcriptional regeneration program after peripheral nerve injury. Neurobiol Dis 127:178–192.  https://doi.org/10.1016/j.nbd.2019.02.001 CrossRefPubMedGoogle Scholar
  8. 8.
    Shin JE, Cho Y, Beirowski B, Milbrandt J, Cavalli V, DiAntonio A (2012) Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74:1015–1022.  https://doi.org/10.1016/j.neuron.2012.04.028 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hammarlund M, Nix P, Hauth L et al (2009) Axon regeneration requires a conserved MAP kinase pathway. Science (80- ) 323:802–806.  https://doi.org/10.1126/science.1165527 CrossRefGoogle Scholar
  10. 10.
    Yan D, Wu Z, Chisholm AD, Jin Y (2009) The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration. Cell 138:1005–1018.  https://doi.org/10.1016/j.cell.2009.06.023 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xiong X, Wang X, Ewanek R, Bhat P, Diantonio A, Collins CA (2010) Protein turnover of the Wallenda/DLK kinase regulates a retrograde response to axonal injury. J Cell Biol 191:211–223.  https://doi.org/10.1083/jcb.201006039 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hao Y, Frey E, Yoon C et al (2016) An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. Elife:5.  https://doi.org/10.7554/eLife.14048
  13. 13.
    Ghosh-Roy A, Wu Z, Goncharov A et al (2010) Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci.  https://doi.org/10.1523/jneurosci.5464-09.2010 CrossRefGoogle Scholar
  14. 14.
    Fernandes KA, Harder JM, John SW, Shrager P, Libby RT (2014) DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis 69:108–116.  https://doi.org/10.1016/j.nbd.2014.05.015 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Welsbie DS, Yang Z, Ge Y, Mitchell KL, Zhou X, Martin SE, Berlinicke CA, Hackler L Jr et al (2013) Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proc Natl Acad Sci 110:4045–4050.  https://doi.org/10.1073/pnas.1211284110 CrossRefPubMedGoogle Scholar
  16. 16.
    Ghosh AS, Wang B, Pozniak CD, Chen M, Watts RJ, Lewcock JW (2011) DLK induces developmental neuronal degeneration via selective regulation of proapoptotic JNK activity. J Cell Biol 194:751–764.  https://doi.org/10.1083/jcb.201103153 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pozniak CD, Sengupta Ghosh A, Gogineni A et al (2013) Dual leucine zipper kinase is required for excitotoxicity-induced neuronal degeneration. J Exp Med 210:2553–2567.  https://doi.org/10.1084/jem.20122832 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R, Powell EH, Sheehan AE, Avery MA et al (2012) dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337:481–484.  https://doi.org/10.1126/science.1223899 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gerdts J, Summers DW, Sasaki Y, DiAntonio A, Milbrandt J (2013) Sarm1-mediated axon degeneration requires both SAM and TIR interactions. J Neurosci 33:13569–13580.  https://doi.org/10.1523/JNEUROSCI.1197-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Essuman K, Summers DW, Sasaki Y et al (2017) The SARM1 Toll/Interleukin-1 receptor domain possesses intrinsic NAD+ cleavage activity that promotes pathological axonal degeneration. Neuron 93:1334–1343.e5.  https://doi.org/10.1016/j.neuron.2017.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Henninger N, Bouley J, Sikoglu EM, An J, Moore CM, King JA, Bowser R, Freeman MR et al (2016) Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1. Brain 139:1094–1105.  https://doi.org/10.1093/brain/aww001 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Summers DW, DiAntonio A, Milbrandt J (2014) Mitochondrial dysfunction induces sarm1-dependent cell death in sensory neurons. J Neurosci 34:9338–9350.  https://doi.org/10.1523/JNEUROSCI.0877-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ziogas NK, Koliatsos VE (2018) Primary traumatic axonopathy in mice subjected to impact acceleration: a reappraisal of pathology and mechanisms with high-resolution anatomical methods. J Neurosci:2343–2317.  https://doi.org/10.1523/JNEUROSCI.2343-17.2018 CrossRefGoogle Scholar
  24. 24.
    Geisler S, Doan RA, Strickland A, Huang X, Milbrandt J, DiAntonio A (2016) Prevention of vincristine-induced peripheral neuropathy by genetic deletion of SARM1 in mice. Brain 139:3092–3108.  https://doi.org/10.1093/brain/aww251 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Turkiew E, Falconer D, Reed N, Höke A (2017) Deletion of Sarm1 gene is neuroprotective in two models of peripheral neuropathy. J Peripher Nerv Syst 22:162–171.  https://doi.org/10.1111/jns.12219 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kim Y, Zhou P, Qian L, Chuang JZ, Lee J, Li C, Iadecola C, Nathan C et al (2007) MyD88-5 links mitochondria, microtubules, and JNK3 in neurons and regulates neuronal survival. J Exp Med 204:2063–2074.  https://doi.org/10.1084/jem.20070868 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Godzik K, Coleman MP (2015) The axon-protective WLDS protein partially rescues mitochondrial respiration and glycolysis after axonal injury. J Mol Neurosci 55:865–871.  https://doi.org/10.1007/s12031-014-0440-2 CrossRefPubMedGoogle Scholar
  28. 28.
    Gilley J, Orsomando G, Nascimento-Ferreira I, Coleman MP (2015) Absence of SARM1 rescues development and survival of NMNAT2-Deficient axons. Cell Rep 10:1975–1982.  https://doi.org/10.1016/j.celrep.2015.02.060 CrossRefGoogle Scholar
  29. 29.
    Sasaki Y, Nakagawa T, Mao X et al (2016) NMNAT1 inhibits axon degeneration via blockade of SARM1-mediated NAD(+) depletionx. J Neurosci:2343–2317.  https://doi.org/10.7554/eLife.19749
  30. 30.
    Huppke P, Wegener E, Gilley J, Angeletti C, Kurth I, Drenth JPH, Stadelmann C, Barrantes-Freer A et al (2019) Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia. Exp Neurol 320:112958.  https://doi.org/10.1016/j.expneurol.2019.112958 CrossRefPubMedGoogle Scholar
  31. 31.
    Lukacs M, Gilley J, Zhu Y, Orsomando G, Angeletti C, Liu J, Yang X, Park J et al (2019) Severe biallelic loss-of-function mutations in nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) in two fetuses with fetal akinesia deformation sequence. Exp Neurol 320:112961.  https://doi.org/10.1016/j.expneurol.2019.112961 CrossRefPubMedGoogle Scholar
  32. 32.
    Klim JR, Williams LA, Limone F, Guerra San Juan I, Davis-Dusenbery BN, Mordes DA, Burberry A, Steinbaugh MJ et al (2019) ALS-implicated protein TDP-43 sustains levels of STMN2, a mediator of motor neuron growth and repair. Nat Neurosci 22:167–179.  https://doi.org/10.1038/s41593-018-0300-4 CrossRefPubMedGoogle Scholar
  33. 33.
    Melamed Z, López-Erauskin J, Baughn MW et al (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 22:180–190.  https://doi.org/10.1038/s41593-018-0293-z CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Shin JE, Miller BR, Babetto E, Cho Y, Sasaki Y, Qayum S, Russler EV, Cavalli V et al (2012) SCG10 is a JNK target in the axonal degeneration pathway. Proc Natl Acad Sci U S A 109:E3696–E3705.  https://doi.org/10.1073/pnas.1216204109 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Walker LJ, Summers DW, Sasaki Y et al (2017) MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. Elife 6.  https://doi.org/10.7554/eLife.22540
  36. 36.
    Summers DW, Milbrandt J, DiAntonio A (2018) Palmitoylation enables MAPK-dependent proteostasis of axon survival factors. Proc Natl Acad Sci 115:E8746–E8754.  https://doi.org/10.1073/pnas.1806933115 CrossRefPubMedGoogle Scholar
  37. 37.
    Miller BR, Press C, Daniels RW, Sasaki Y, Milbrandt J, DiAntonio A (2009) A dual leucine kinase-dependent axon self-destruction program promotes Wallerian degeneration. Nat Neurosci 12:387–389.  https://doi.org/10.1038/nn.2290 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang J, Wu Z, Renier N, Simon DJ, Uryu K, Park DS, Greer PA, Tournier C et al (2015) Pathological axonal death through a Mapk cascade that triggers a local energy deficit. Cell 160:161–176.  https://doi.org/10.1016/j.cell.2014.11.053 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Welsbie DS, Mitchell KL, Jaskula-Ranga V, Sluch VM, Yang Z, Kim J, Buehler E, Patel A et al (2017) Enhanced functional genomic screening identifies novel mediators of dual leucine zipper kinase-dependent injury signaling in neurons. Neuron 94:1142–1154.  https://doi.org/10.1016/j.neuron.2017.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gerdts J, Brace EJ, Sasaki Y, DiAntonio A, Milbrandt J (2015) SARM1 activation triggers axon degeneration locally via NAD+ destruction. Science 348:453–457.  https://doi.org/10.1126/science.1258366 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Milde S, Gilley J, Coleman MP (2013) Subcellular localization determines the stability and axon protective capacity of axon survival factor Nmnat2. PLoS Biol 11.  https://doi.org/10.1371/journal.pbio.1001539 CrossRefGoogle Scholar
  42. 42.
    Misgeld T, Schwarz TL (2017) Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron 96:651–666.  https://doi.org/10.1016/j.neuron.2017.09.055 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306.  https://doi.org/10.1038/81834 CrossRefPubMedGoogle Scholar
  44. 44.
    Green DR, Galluzzi L, Kroemer G (2014) Metabolic control of cell death. Science (80- ) 345:1250256–1250256.  https://doi.org/10.1126/science.1250256 CrossRefGoogle Scholar
  45. 45.
    Ali YO, Allen HM, Yu L, Li-Kroeger D, Bakhshizadehmahmoudi D, Hatcher A, McCabe C, Xu J et al (2016) NMNAT2:HSP90 complex mediates proteostasis in proteinopathies. PLoS Biol 14:e1002472.  https://doi.org/10.1371/journal.pbio.1002472 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ljungberg MC, Ali YO, Zhu J, Wu CS, Oka K, Zhai RG, Lu HC (2012) CREB-activity and NMNAT2 transcription are down-regulated prior to neurodegeneration, while NMNAT2 over-expression is neuroprotective, in a mouse model of human tauopathy. Hum Mol Genet 21:251–267.  https://doi.org/10.1093/hmg/ddr492 CrossRefPubMedGoogle Scholar
  47. 47.
    Xiong X, Collins CA (2012) A conditioning lesion protects axons from degeneration via the Wallenda/DLK MAP kinase signaling cascade. J Neurosci 32:610–615.  https://doi.org/10.1523/JNEUROSCI.3586-11.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Valakh V, Frey E, Babetto E, Walker LJ, DiAntonio A (2015) Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury. Neurobiol Dis 77:13–25.  https://doi.org/10.1016/j.nbd.2015.02.014 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li J, Zhang YV, Adib EA et al (2017) Restraint of presynaptic protein levels by Wnd/DLK signaling mediates synaptic defects associated with the kinesin-3 motor Unc-104. Elife 6.  https://doi.org/10.7554/eLife.24271
  50. 50.
    Huang YWA, Zhou B, Wernig M, Südhof TC (2017) ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 168:427–441.e21.  https://doi.org/10.1016/j.cell.2016.12.044 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Ali YO, Bradley G, Lu HC (2017) Screening with an NMNAT2-MSD platform identifies small molecules that modulate NMNAT2 levels in cortical neurons. Sci Rep 7.  https://doi.org/10.1038/srep43846
  52. 52.
    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O et al (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:440–455.  https://doi.org/10.1016/j.cell.2014.09.014 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gerdts J, Sasaki Y, Vohra B, Marasa J, Milbrandt J (2011) Image-based screening identifies novel roles for I{kappa}B kinase and glycogen synthase kinase 3 in axonal degeneration. J Biol Chem 286:28011–28018.  https://doi.org/10.1074/jbc.M111.250472 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiologyUniversity of IowaIowa CityUSA
  2. 2.Iowa Neuroscience InstituteUniversity of IowaIowa CityUSA
  3. 3.Department of Developmental BiologyWashington University School of MedicineSt. LouisUSA
  4. 4.Department of GeneticsWashington University School of MedicineSt. LouisUSA
  5. 5.Needleman Center for Neurometabolism and Axonal TherapeuticsWashington University School of MedicineSt. LouisUSA

Personalised recommendations