Advertisement

Canonical Wnt Signaling Modulates the Expression of Pre- and Postsynaptic Components in Different Temporal Patterns

  • Milka Martinez
  • Viviana I. Torres
  • Carlos P. Vio
  • Nibaldo C. InestrosaEmail author
Article
  • 71 Downloads

Abstract

Wnt ligands play critical roles in neuronal development, synapse formation, synaptic activity, and plasticity. Synaptic plasticity requires molecular remodeling of synapses, implying the expression of key synaptic components. Some studies have linked Wnt signaling activity to changes in synaptic protein levels. However, the presynaptic and postsynaptic gene expression profiles of hippocampal neurons exposed to Wnt proteins have not been studied. Hence, we treated rat cultured hippocampal neurons with recombinant Wnt3a, lithium, and the Wnt inhibitor Dkk-1 for different treatment durations and measured the mRNA and protein levels of pre- and postsynaptic components. The ligand Wnt3a promoted the differential temporal expression of genes encoding presynaptic and postsynaptic proteins. Gene expression of the presynaptic proteins Rim1, piccolo (Pclo), Erc2, Ctbp1 and Rimbp2 increased in a specific temporal pattern. Simultaneously, the mRNA and protein levels of postsynaptic components showed a different temporal expression pattern, e.g., the mRNAs for postsynaptic scaffolding components such as postsynaptic density protein-95 (PSD-95/Dlg4), Homer1 and Shank1 were temporally regulated by both Wnt3a and lithium. On the other hand, the mRNA levels of the gene encoding the protein calcium/calmodulin-dependent protein kinase IV (Camk4), canonically upregulated by Wnt, were increased. Our results suggest that Wnt signaling orchestrates expressional changes in genes encoding presynaptic and postsynaptic components, probably as part of a synaptic plasticity mechanism in neurons.

Keywords

Canonical Wnt signaling Genes encoding presynaptic proteins Genes encoding postsynaptic proteins, hippocampus. 

Notes

Acknowledgments

The authors would like to thank Dr. Enrique Brandan for sharing the microplate spectrophotometer (BioTek) with us. This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-AFB 170005) to N.C.I. and FONDECYT (no. 1160724) to N.C.I. We also thank the Sociedad Química y Minera de Chile (SQM) for the special grant “The Role of Lithium in Human Health and Disease”.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest concerning the contents of this article.

Supplementary material

12035_2019_1785_MOESM1_ESM.docx (6.2 mb)
ESM 1 (DOCX 6308 kb)

References

  1. 1.
    LeDoux JE (1993) Emotional memory: In search of systems and synapses. Ann N Y Acad Sci 702:149–157.  https://doi.org/10.1111/ecc.12007 CrossRefPubMedGoogle Scholar
  2. 2.
    Südhof TC (2018) Towards an understanding of synapse formation. Neuron 100:276–293.  https://doi.org/10.1016/j.neuron.2018.09.040 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lepeta K, Lourenco MV, Schweitzer BC, Martino Adami PV, Banerjee P, Catuara-Solarz S, de la Fuente Revenga M, Guillem AM et al (2016) Synaptopathies: Synaptic dysfunction in neurological disorders - a review from students to students. J Neurochem 138:785–805.  https://doi.org/10.1111/jnc.13713 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zoghbi HY, Bear MF (2012) Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb Perspect Biol 4:1–22.  https://doi.org/10.1101/cshperspect.a009886 CrossRefGoogle Scholar
  5. 5.
    Penzes P, Remmers C, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM (2014) Structural alterations of synapses in psychiatric and neurodegenerative disorders. In: Peckel V, Segal M (eds) The synapse. Elsevier, pp 281–300Google Scholar
  6. 6.
    Torres VI, Inestrosa NC (2017) Vertebrate presynaptic active zone assembly: A role accomplished by diverse molecular and cellular mechanisms. Mol Neurobiol 55(6):4513–4528. 1–16.  https://doi.org/10.1007/s12035-017-0661-9 CrossRefPubMedGoogle Scholar
  7. 7.
    Citri A, Malenka RC (2008) Synaptic plasticity: Multiple forms, functions and mechanisms. Neuropsychopharmacology 33:18–41.  https://doi.org/10.1038/sj.npp.1301559 CrossRefPubMedGoogle Scholar
  8. 8.
    Kittel RJ, Heckmann M (2016) Synaptic vesicle proteins and active zone plasticity. Front Synaptic Neurosci.  https://doi.org/10.3389/fnsyn.2016.00008
  9. 9.
    Gundelfinger ED, Fejtova A (2012) Molecular organization and plasticity of the cytomatrix at the active zone. Curr Opin Neurobiol 22:423–430.  https://doi.org/10.1016/j.conb.2011.10.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Zamorano PL, Garner CC (2001) Unwebbing the presynaptic web. Neuron 32:3–6.  https://doi.org/10.1016/S0896-6273(01)00458-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Südhof TC (2012) The presynaptic active zone. Neuron 75:11–25.  https://doi.org/10.1016/j.neuron.2012.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Blanpied TA, Kerr JM, Ehlers MD (2008) Structural plasticity with preserved topology in the postsynaptic protein network. Proc Natl Acad Sci 105:12587–12592.  https://doi.org/10.1073/pnas.0711669105 CrossRefPubMedGoogle Scholar
  13. 13.
    Sturgill JF, Steiner P, Czervionke BL, Sabatini BL (2009) Distinct domains within PSD-95 mediate synaptic incorporation, stabilization, and activity-dependent trafficking. J Neurosci 29:12845–12854.  https://doi.org/10.1523/JNEUROSCI.1841-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Inestrosa NC, Arenas E (2010) Emerging roles of Wnts in the adult nervous system. Nat Rev Neurosci 11:77–86.  https://doi.org/10.1038/nrn2755 CrossRefPubMedGoogle Scholar
  15. 15.
    Inestrosa NC, Varela-Nallar L (2014) Wnt signaling in the nervous system and in Alzheimer’s disease. J Mol Cell Biol 6:64–74.  https://doi.org/10.1093/jmcb/mjt051 CrossRefPubMedGoogle Scholar
  16. 16.
    Arrázola MS, Varela-Nallar L, Colombres M, Toledo EM, Cruzat F, Pavez L, Assar R, Aravena A et al (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J Cell Physiol 221:658–667.  https://doi.org/10.1002/jcp.21902 CrossRefPubMedGoogle Scholar
  17. 17.
    Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A, Ilyas M, Bodmer WF, Moyer MP et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96:1603–1608.  https://doi.org/10.1073/pnas.96.4.1603 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hödar C, Assar R, Colombres M, Aravena A, Pavez L, González M, Martínez S, Inestrosa NC et al (2010) Genome-wide identification of new Wnt/β-catenin target genes in the human genome using CART method. BMC Genomics 11:348.  https://doi.org/10.1186/1471-2164-11-348 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nusse R (2012) Wnt Signaling. Cold Spring Harb Perspect Biol 4:a011163.  https://doi.org/10.1101/cshperspect.a011163 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Habas R, Kato Y, He X (2001) Wnt/frizzled activation of rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854.  https://doi.org/10.1016/S0092-8674(01)00614-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rosso SB, Sussman D, Wynshaw-Boris A, Salinas PC (2005) Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development. Nat Neurosci 8:34–42.  https://doi.org/10.1038/nn1374 CrossRefPubMedGoogle Scholar
  22. 22.
    Farías GG, Alfaro IE, Cerpa W, Grabowski CP, Godoy JA, Bonansco C, Inestrosa NC (2009) Wnt-5a/JNK signaling promotes the clustering of PSD-95 in hippocampal neurons. J Biol Chem 284:15857–15866.  https://doi.org/10.1074/jbc.M808986200 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Varela-Nallar L, Alfaro IE, Serrano FG, Parodi J, Inestrosa NC (2010) Wingless-type family member 5A (Wnt-5a) stimulates synaptic differentiation and function of glutamatergic synapses. Proc Natl Acad Sci 107:21164–21169.  https://doi.org/10.1073/pnas.1010011107 CrossRefPubMedGoogle Scholar
  24. 24.
    Ramírez VT, Ramos-Fernández E, Henríquez JP, Lorenzo A, Inestrosa NC (2016) Wnt-5a/frizzled9 receptor signaling through the Gαo-Gβγ complex regulates dendritic spine formation. J Biol Chem 291:19092–19107.  https://doi.org/10.1074/jbc.M116.722132 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen C-M, Orefice LL, Chiu S-L, LeGates TA, Hattar S, Huganir RL, Zhao H, Xu B et al (2017) Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice. Proc Natl Acad Sci 114:E619–E628.  https://doi.org/10.1073/pnas.1615792114 CrossRefPubMedGoogle Scholar
  26. 26.
    Paganoni S, Bernstein J, Ferreira A (2010) Ror1-Ror2 complexes modulate synapse formation in hippocampal neurons. Neuroscience 165:1261–1274.  https://doi.org/10.1016/j.neuroscience.2009.11.056 CrossRefPubMedGoogle Scholar
  27. 27.
    Varela-Nallar L, Grabowski CP, Alfaro IE, Alvarez AR, Inestrosa NC (2009) Role of the Wnt receptor Frizzled-1 in presynaptic differentiation and function. Neural Dev 4:1–15.  https://doi.org/10.1186/1749-8104-4-41 CrossRefGoogle Scholar
  28. 28.
    Dickins EM, Salinas PC (2013) Wnts in action: From synapse formation to synaptic maintenance. Front Cell Neurosci 7:1–11.  https://doi.org/10.3389/fncel.2013.00162 CrossRefGoogle Scholar
  29. 29.
    Cerpa W, Godoy JA, Alfaro I, Farías GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC (2008) Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem 283:5918–5927.  https://doi.org/10.1074/jbc.M705943200 CrossRefPubMedGoogle Scholar
  30. 30.
    Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535.  https://doi.org/10.1016/S0092-8674(00)80689-3 CrossRefPubMedGoogle Scholar
  31. 31.
    Cadigan KM, Waterman ML (2012) TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 4:1–22.  https://doi.org/10.1101/cshperspect.a007906 CrossRefGoogle Scholar
  32. 32.
    Schuijers J, Mokry M, Hatzis P, Cuppen E, Clevers H (2014) Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF. EMBO J 33:146–156.  https://doi.org/10.1002/embj.201385358 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C et al (2018) Ensembl 2018. Nucleic Acids Res 46:D754–D761.  https://doi.org/10.1093/nar/gkx1098 CrossRefPubMedGoogle Scholar
  34. 34.
    Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837.  https://doi.org/10.1016/j.cell.2007.05.009 CrossRefGoogle Scholar
  35. 35.
    Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, Bessy A, Chèneby J et al (2018) JASPAR 2018: Update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res 46:D260–D266.  https://doi.org/10.1093/nar/gkx1126 CrossRefGoogle Scholar
  36. 36.
    Quandt K, Frech K, Karas H, Wingender E, Werner T (1995) Matlnd and matlnspector: New fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 23:4878–4884.  https://doi.org/10.1093/nar/23.23.4878 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kaech S, Banker G (2006) Culturing hippocampal neurons. Nat Protoc 1:2406–2415.  https://doi.org/10.1038/nprot.2006.356 CrossRefPubMedGoogle Scholar
  38. 38.
    Fath T, Ke YD, Gunning P, Götz J, Ittner LM (2009) Primary support cultures of hippocampal and substantia nigra neurons. Nat Protoc 4:78–85.  https://doi.org/10.1038/nprot.2008.199 CrossRefPubMedGoogle Scholar
  39. 39.
    Davis JB, Maher P (1994) Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res 652:169–173.  https://doi.org/10.1016/0006-8993(94)90334-4 CrossRefPubMedGoogle Scholar
  40. 40.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods San Diego Calif 25:402–408CrossRefGoogle Scholar
  41. 41.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CTmethod. Nat Protoc 3:1101–1108.  https://doi.org/10.1038/nprot.2008.73 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Szemes M, Greenhough A, Melegh Z, Malik S, Yuksel A, Catchpoole D, Gallacher K, Kollareddy M et al (2018) Wnt Signalling drives context-dependent differentiation or proliferation in neuroblastoma. Neoplasia (United States) 20:335–350.  https://doi.org/10.1016/j.neo.2018.01.009 CrossRefGoogle Scholar
  43. 43.
    Rutledge RG, Stewart D (2008) Critical evaluation of methods used to determine amplification efficiency refutes the exponential character of real-time PCR. BMC Mol Biol 9:1–12.  https://doi.org/10.1186/1471-2199-9-96 CrossRefGoogle Scholar
  44. 44.
    Ramos-Fernández E, Tapia-Rojas C, Ramírez VT, Inestrosa NC (2018) Wnt-7a stimulates dendritic spine morphogenesis and PSD-95 expression through canonical signaling. Mol Neurobiol 56:1870–1882.  https://doi.org/10.1007/s12035-018-1162-1 CrossRefPubMedGoogle Scholar
  45. 45.
    Tapia-Rojas C, Schüller A, Lindsay CB, Ureta RC, Mejías-Reyes C, Hancke J, Melo F, Inestrosa NC (2015) Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: Autoregulation of GSK-3β in vivo. Biochem J 466:415–430.  https://doi.org/10.1042/BJ20140207 CrossRefPubMedGoogle Scholar
  46. 46.
    Van de Wetering M, Cavallo R, Dooijes D et al (1997) Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88:789–799.  https://doi.org/10.1016/S0092-8674(00)81925-X CrossRefPubMedGoogle Scholar
  47. 47.
    Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: Pitfalls of densitometry. Electrophoresis 30:1845–1855.  https://doi.org/10.1002/elps.200800720 CrossRefPubMedGoogle Scholar
  48. 48.
    Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VMY, Klein PS (1997) Activation of the Wnt signaling pathway: A molecular mechanism for lithium action. Dev Biol 185:82–91.  https://doi.org/10.1006/dbio.1997.8552 CrossRefPubMedGoogle Scholar
  49. 49.
    Medina MA, Andrade VM, Caracci MO, Avila ME, Verdugo DA, Vargas MF, Ugarte GD, Reyes AE et al (2018) Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 8:45.  https://doi.org/10.1038/s41398-018-0093-y CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ding X, Ju X, Lu Y, Chen W, Wang J, Miao C, Chen J (2018) Angiotensin II-mediated suppression of synaptic proteins in mouse hippocampal neuronal HT22 cell was inhibited by propofol: Role of calcium signaling pathway. J Anesth 32:856–865.  https://doi.org/10.1007/s00540-018-2565-x CrossRefPubMedGoogle Scholar
  51. 51.
    Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362.  https://doi.org/10.1038/34848 CrossRefPubMedGoogle Scholar
  52. 52.
    Tapia-Rojas C, Burgos PV, Inestrosa NC (2016) Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of amyloid-β (Aβ)42peptides. J Neurochem 139:1175–1191.  https://doi.org/10.1111/jnc.13873 CrossRefPubMedGoogle Scholar
  53. 53.
    Pérez-Palma E, Andrade V, Caracci MO, Bustos BI, Villaman C, Medina MA, Ávila ME, Ugarte GD et al (2016) Early transcriptional changes induced by Wnt/ β -catenin signaling in hippocampal neurons. Neural Plast 2016:1–13.  https://doi.org/10.1155/2016/4672841 CrossRefGoogle Scholar
  54. 54.
    Oliva CA, Montecinos-Oliva C, Inestrosa NC (2018) Wnt signaling in the central nervous system: New insights in health and disease. Prog Mol Biol Transl Sci 153:81–130.  https://doi.org/10.1016/bs.pmbts.2017.11.018 CrossRefPubMedGoogle Scholar
  55. 55.
    Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB, Rosso SB, Hall A, Brickley S et al (2006) Signaling across the synapse: A role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol 174:127–139.  https://doi.org/10.1083/jcb.200511054 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Cerpa W, Farías GG, Godoy JA, Fuenzalida M, Bonansco C, Inestrosa NC (2010) Wnt-5a occludes Aβ oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3.  https://doi.org/10.1186/1750-1326-5-3 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cerpa W, Gambrill A, Inestrosa NC, Barria A (2011) Regulation of NMDA-receptor synaptic transmission by Wnt signaling. J Neurosci 31:9466–9471.  https://doi.org/10.1523/JNEUROSCI.6311-10.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chen J, Chang SP, Tang SJ (2006) Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem 281:11910–11916.  https://doi.org/10.1074/jbc.M511920200 CrossRefPubMedGoogle Scholar
  59. 59.
    Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: From synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:1–16.  https://doi.org/10.3389/fncel.2013.00224 CrossRefGoogle Scholar
  60. 60.
    Friedman HV, Bresler T, Garner CC, Ziv NE (2000) Assembly of new individual excitatory synapses: Time course and temporal order of synaptic molecule recruitment. Neuron 27:57–69.  https://doi.org/10.1016/S0896-6273(00)00009-X CrossRefPubMedGoogle Scholar
  61. 61.
    Röhrs S, Kutzner N, Vlad A, Grunwald T, Ziegler S, Müller O (2009) Chronological expression of Wnt target genes Ccnd1, Myc, Cdkn1a, Tfrc, Plf1 and Ramp3. Cell Biol Int 33:501–508.  https://doi.org/10.1016/j.cellbi.2009.01.016 CrossRefPubMedGoogle Scholar
  62. 62.
    Gujral TS, Macbeath G (2010) A system-wide investigation of the dynamics of wnt signaling reveals novel phases of transcriptional regulation. PLoS One 5:1–10.  https://doi.org/10.1371/journal.pone.0010024 CrossRefGoogle Scholar
  63. 63.
    Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, Frischknecht R, Schanze D et al (2015) Synaptic activity controls localization and function of CtBP1 via binding to bassoon and piccolo. EMBO J 34:1056–1077.  https://doi.org/10.15252/embj.201488796 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Acuna C, Liu X, Südhof TC (2016) How to make an active zone: Unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron. 91:792–807.  https://doi.org/10.1016/j.neuron.2016.07.042 CrossRefPubMedGoogle Scholar
  65. 65.
    Acuna C, Liu X, Gonzalez A, Südhof TC (2015) RIM-BPs mediate tight coupling of action potentials to Ca2+-triggered neurotransmitter release. Neuron 87:1234–1247.  https://doi.org/10.1016/j.neuron.2015.08.027 CrossRefPubMedGoogle Scholar
  66. 66.
    Grauel MK, Maglione M, Reddy-Alla S, Willmes CG, Brockmann MM, Trimbuch T, Rosenmund T, Pangalos M et al (2016) RIM-binding protein 2 regulates release probability by fine-tuning calcium channel localization at murine hippocampal synapses. Proc Natl Acad Sci 113:11615–11620.  https://doi.org/10.1073/pnas.1605256113 CrossRefPubMedGoogle Scholar
  67. 67.
    Hibino H, Pironkova R, Onwumere O, Vologodskaia M, Hudspeth AJ, Lesage F (2002) RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34:411–423.  https://doi.org/10.1016/S0896-6273(02)00667-0 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Südhof TC (2011) RIM proteins tether Ca2+channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295.  https://doi.org/10.1016/j.cell.2010.12.029 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Kobayashi S, Hida Y, Ishizaki H, Inoue E, Tanaka-Okamoto M, Yamasaki M, Miyazaki T, Fukaya M et al (2016) The active zone protein CAST regulates synaptic vesicle recycling and quantal size in the mouse hippocampus. Eur J Neurosci 44:2272–2284.  https://doi.org/10.1111/ejn.13331 CrossRefPubMedGoogle Scholar
  70. 70.
    Hida Y, Ohtsuka T (2010) CAST and ELKS proteins: Structural and functional determinants of the presynaptic active zone. J Biochem 148:131–137CrossRefGoogle Scholar
  71. 71.
    Ebert DH, Greenberg ME (2013) Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–337.  https://doi.org/10.1038/nature11860 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Okerlund ND, Cheyette BNR (2011) Synaptic Wnt signaling—A contributor to major psychiatric disorders? J Neurodev Disord 3:162–174.  https://doi.org/10.1007/s11689-011-9083-6 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Torres VI, Vallejo D, Inestrosa NC (2017) Emerging synaptic molecules as candidates in the etiology of neurological disorders. Neural Plast 2017:1–25.  https://doi.org/10.1155/2017/8081758 CrossRefGoogle Scholar
  74. 74.
    Wisniewska MB, Nagalski A, Dabrowski M, Misztal K, Kuznicki J (2012) Novel β-catenin target genes identified in thalamic neurons encode modulators of neuronal excitability. BMC Genomics 13:1–17.  https://doi.org/10.1186/1471-2164-13-635 CrossRefGoogle Scholar
  75. 75.
    Iossifov I, O’Roak BJ, Sanders SJ, Ronemus M, Krumm N, Levy D, Stessman HA, Witherspoon KT et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature. 515:216–221.  https://doi.org/10.1038/nature13908 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    De Rubeis S, He X, Goldberg AP et al (2014) Synaptic, transcriptional and chromatin genes disrupted in autism. Nature. 515:209–215.  https://doi.org/10.1038/nature13772 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Alkelai A, Greenbaum L, Lupoli S, Kohn Y, Sarner-Kanyas K, Ben-Asher E, Lancet D, Macciardi F et al (2012) Association of the type 2 diabetes mellitus susceptibility gene, TCF7L2, with schizophrenia in an Arab-Israeli family sample. PLoS One 7:e29228.  https://doi.org/10.1371/journal.pone.0029228 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Hansen T, Ingason A, Djurovic S, Melle I, Fenger M, Gustafsson O, Jakobsen KD, Rasmussen HB et al (2011) At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. Biol Psychiatry 70:59–63.  https://doi.org/10.1016/j.biopsych.2011.01.031 CrossRefPubMedGoogle Scholar
  79. 79.
    Liu L, Li J, Yan M, Li J, Chen J, Zhang Y, Zhu X, Wang L et al (2017) TCF7L2 polymorphisms and the risk of schizophrenia in the Chinese Han population. Oncotarget 8:28614–28620.  https://doi.org/10.18632/oncotarget.15603 CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Winham SJ, Cuellar-Barboza AB, Oliveros A, McElroy SL, Crow S, Colby C, Choi DS, Chauhan M et al (2014) Genome-wide association study of bipolar disorder accounting for effect of body mass index identifies a new risk allele in TCF7L2. Mol Psychiatry 19:1010–1016.  https://doi.org/10.1038/mp.2013.159 CrossRefPubMedGoogle Scholar
  81. 81.
    Cuellar-Barboza AB, Winham SJ, Mcelroy SL et al (2016) Accumulating evidence for a role of TCF7L2 variants in bipolar disorder with elevated body mass index. Bipolar Disord 18:124–135.  https://doi.org/10.1111/bdi.12368 CrossRefPubMedGoogle Scholar
  82. 82.
    Gough SCL, O’Donovan MC (2005) Clustering of metabolic comorbidity in schizophrenia: A genetic contribution? J Psychopharmacol 19:47–55.  https://doi.org/10.1177/0269881105058380 CrossRefPubMedGoogle Scholar
  83. 83.
    Lin PI, Shuldiner AR (2010) Rethinking the genetic basis for comorbidity of schizophrenia and type 2 diabetes. Schizophr Res 123:234–243.  https://doi.org/10.1016/j.schres.2010.08.022 CrossRefPubMedGoogle Scholar
  84. 84.
    Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, Sulkava R, Kivipelto M (2010) Diabetes, Alzheimer disease, and vascular dementia: A population-based neuropathologic study. Neurology 75:1195–1202.  https://doi.org/10.1212/WNL.0b013e3181f4d7f8 CrossRefPubMedGoogle Scholar
  85. 85.
    Sanz C, Andrieu S, Sinclair A, Hanaire H, Vellas B, For the REAL.FR Study Group (2009) Diabetes is associated with a slower rate of cognitive decline in Alzheimer disease. Neurology 73:1359–1366.  https://doi.org/10.1212/WNL.0b013e3181bd80e9 CrossRefPubMedGoogle Scholar
  86. 86.
    Adeghate E, Donath T, Adem A (2013) Alzheimer disease and diabetes mellitus: Do they have anything in common? Curr Alzheimer Res 10:609–617.  https://doi.org/10.2174/15672050113109990009 CrossRefPubMedGoogle Scholar
  87. 87.
    Ríos JA, Cisternas P, Arrese M, Barja S, Inestrosa NC (2014) Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 121:125–146.  https://doi.org/10.1016/j.pneurobio.2014.07.004 CrossRefPubMedGoogle Scholar
  88. 88.
    Blom ES, Wang Y, Skoglund L, Hansson AC, Ubaldi M, Lourdusamy A, Sommer WH, Mielke M et al (2011) Increased mRNA levels of TCF7L2 and MYC of the Wnt pathway in Tg-ArcSwe mice and Alzheimer’s disease brain. Int J Alzheimers Dis 2011:1–7.  https://doi.org/10.4061/2011/936580 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centro de Envejecimiento y Regeneración (CARE UC), Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro de Excelencia en Biomedicina de Magallanes (CEBIMA)Universidad de MagallanesPunta ArenasChile

Personalised recommendations