Advertisement

Expression of Histone Deacetylases HDAC1 and HDAC2 and Their Role in Apoptosis in the Penumbra Induced by Photothrombotic Stroke

  • S. V. Demyanenko
  • V. A. Dzreyan
  • M. A. Neginskaya
  • A. B. UzdenskyEmail author
Article

Abstract

In ischemic stroke, vascular occlusion rapidly induces tissue infarct. Over the ensuing hours, damage spreads to adjacent tissue and forms transition zone (penumbra), which is potentially salvageable. Epigenetic regulation of chromatin structure controls gene expression and protein synthesis. We studied the expression of histone deacetylases HDAC1 and HDAC2 in the penumbra at 4 or 24 h after photothrombotic stroke (PTS) in the rat brain cortex. PTS increased the expression of HDAC1 and HDAC2 in penumbra and caused the redistribution of HDAC1 but not HDAC2 from the neuronal nuclei to cytoplasm. In astrocytes, HDAC1 expression and localization did not change. In neurons, HDAC2 localized exclusively in nuclei, but in astrocytes, it was also observed in processes. PTS induced neuronal apoptosis in the penumbra. TUNEL-stained apoptotic neurons co-localized with HDAC2 but not HDAC1. These data suggest that HDAC2 may represent the potential target for anti-stroke therapy and its selective inhibition may be a promising strategy for the protection of the penumbra tissue after ischemic stroke.

Keywords

Stroke Penumbra Apoptosis Histone deacetylase 

Notes

Funding Information

This study was funded by the Russian Science Foundation (grant # 18-15-00110).

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    Iadecola C, Anrather J (2011) Stroke research at a crossroad: asking the brain for directions. Nat Neurosci 14:1363–1368.  https://doi.org/10.1038/nn.2953 CrossRefGoogle Scholar
  2. 2.
    Hankey GJ (2017) Stroke. Lancet 389:641–654.  https://doi.org/10.1016/S0140-6736(16)30962-X CrossRefGoogle Scholar
  3. 3.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198.  https://doi.org/10.1016/j.neuron.2010.07.002 CrossRefGoogle Scholar
  4. 4.
    Heiss WD (2012) The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 1268:26–34.  https://doi.org/10.1111/j.1749-6632.2012.06668.x CrossRefGoogle Scholar
  5. 5.
    Manning NW, Campbell BC, Oxley TJ, Chapot R (2014) Acute ischemic stroke: time, penumbra, and reperfusion. Stroke 45:640–644.  https://doi.org/10.1161/STROKEAHA.113.003798 CrossRefGoogle Scholar
  6. 6.
    Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339.  https://doi.org/10.1161/STROKEAHA.108.531632 CrossRefGoogle Scholar
  7. 7.
    Nakka VP, Gusain A, Mehta SL, Raghubir R (2008) Molecular mechanisms of apoptosis in cerebral ischemia: multiple neuroprotective opportunities. Mol Neurobiol 37:7–38.  https://doi.org/10.1007/s12035-007-8013-9 CrossRefGoogle Scholar
  8. 8.
    Radak D, Katsiki N, Resanovic I, Jovanovic A, Sudar-Milovanovic E, Zafirovic S, Mousad SA, Isenovic ER (2017) Apoptosis and acute brain ischemia in ischemic stroke. Curr Vasc Pharmacol 15:115–122.  https://doi.org/10.2174/1570161115666161104095522 CrossRefGoogle Scholar
  9. 9.
    Ferrer I, Planas AM (2003) Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol 62:329–339CrossRefGoogle Scholar
  10. 10.
    Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA (2001) Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50:93–103CrossRefGoogle Scholar
  11. 11.
    Lu A, Tang Y, Ran R, Clark JF, Aronow BJ, Sharp FR (2003) Genomics of the periinfarction cortex after focal cerebral ischemia. J Cereb Blood Flow Metab 23:786–810CrossRefGoogle Scholar
  12. 12.
    Küry P, Schroeter M, Jander S (2004) Transcriptional response to circumscribed cortical brain ischemia: spatiotemporal patterns in ischemic vs. remote non-ischemic cortex. Eur J Neurosci 19:1708–1720CrossRefGoogle Scholar
  13. 13.
    Demyanenko SV, Panchenko SN, Uzdensky AB (2015) Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex. Biochem Mosc 80:790–799.  https://doi.org/10.1134/S0006297915060152 CrossRefGoogle Scholar
  14. 14.
    Demyanenko S, Uzdensky A (2017) Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol Neurobiol 54:6839–6856.  https://doi.org/10.1007/s12035-017-0736-7 CrossRefGoogle Scholar
  15. 15.
    Uzdensky A, Demyanenko S, Fedorenko G, Lapteva T, Fedorenko A (2017) Photothrombotic infarct in the rat brain cortex: protein profile and morphological changes in penumbra. Mol Neurobiol 54:4172–4188.  https://doi.org/10.1007/s12035-016-9964-5 CrossRefGoogle Scholar
  16. 16.
    Uzdensky AB (2019, Jun 29) Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins. Apoptosis 24:687–702.  https://doi.org/10.1007/s10495-019-01556-6 CrossRefGoogle Scholar
  17. 17.
    Kouzarides T, Berger SL (2006) Chromatin modifications and mechanisms. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 191–209Google Scholar
  18. 18.
    Konsoula Z, Barile FA (2012) Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods 66:215–220.  https://doi.org/10.1016/j.vascn.2012.08.001 CrossRefGoogle Scholar
  19. 19.
    Volmar CH, Wahlestedt C (2015) Histone deacetylases (HDACs) and brain functions. Neuroepigenetics 1:20–27.  https://doi.org/10.1016/j.nepig.2014.10.002
  20. 20.
    Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031.  https://doi.org/10.1016/j.cell.2009.06.049 CrossRefGoogle Scholar
  21. 21.
    Zhao H, Han Z, Ji X, Luo Y (2016) Epigenetic regulation of oxidative stress in ischemic stroke. Aging dis 7:295–306.  https://doi.org/10.14336/AD.2015.1009 CrossRefGoogle Scholar
  22. 22.
    Hu Z, Zhong B, Tan J, Chen C, Lei Q, Zeng L (2017) The emerging role of epigenetics in cerebral ischemia. Mol Neurobiol 54:1887–1905.  https://doi.org/10.1007/s12035-016-9788-3 CrossRefGoogle Scholar
  23. 23.
    Schweizer S, Meisel A, Märschenz S (2013) Epigenetic mechanisms in cerebral ischemia. J Cereb Blood Flow Metab 33:1335–1346.  https://doi.org/10.1038/jcbfm.2013.93 CrossRefGoogle Scholar
  24. 24.
    Krämer OH (2009) HDAC2: a critical factor in health and disease. Trends Pharmacol Sci 30:647–655.  https://doi.org/10.1016/j.tips.2009.09.007 CrossRefGoogle Scholar
  25. 25.
    Bardai FH, Price V, Zaayman M, Wang L, D'Mello SR (2012) Histone deacetylase-1 (HDAC1) is a molecular switch between neuronal survival and death. J Biol Chem 287:35444–35453.  https://doi.org/10.1074/jbc.M112.394544 CrossRefGoogle Scholar
  26. 26.
    Lin YH, Dong J, Tang Y, Ni HY, Zhang Y, Su P, Liang HY, Yao MC et al (2017) Opening a new time window for treatment of stroke by targeting HDAC2. J Neurosci 37:6712–6728.  https://doi.org/10.1523/JNEUROSCI.0341-17.2017 CrossRefGoogle Scholar
  27. 27.
    Baltan S, Bachleda A, Morrison RS, Murphy SP (2011) Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Transl Stroke Res 2:411–423.  https://doi.org/10.1007/s12975-011-0087-z CrossRefGoogle Scholar
  28. 28.
    Demyanenko S, Neginskaya M, Berezhnaya E (2018) Expression of class I histone deacetylases in ipsilateral and contralateral hemispheres after the focal photothrombotic infarction in the mouse brain. Transl Stroke Res 9:471–483.  https://doi.org/10.1007/s12975-017-0595-6 CrossRefGoogle Scholar
  29. 29.
    Schmidt A, Hoppen M, Strecker JK, Diederich K, Schabitz WR, Schilling M, Minnerup J (2012) Photochemically induced ischemic stroke in rats. Exp Transl Stroke Med 4:13.  https://doi.org/10.1186/2040-7378-4-13 CrossRefGoogle Scholar
  30. 30.
    Uzdensky AB (2018) Photothrombotic stroke as a model of ischemic stroke. Transl Stroke Res 9:437–451.  https://doi.org/10.1007/s12975-017-0593-8 CrossRefGoogle Scholar
  31. 31.
    Paxinos G, Franklin KBJ (2013) Paxinos and Franklin’s the mouse brain in stereotaxic coordinates. Academic Press, AmsterdamGoogle Scholar
  32. 32.
    McCloy RA, Rogers S, Caldon CE, Lorca T, Castro A, Burgess A (2014) Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13:1400–1412.  https://doi.org/10.4161/cc.28401 CrossRefGoogle Scholar
  33. 33.
    Bolte S, Cordelières FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224(Pt 3):213–232.  https://doi.org/10.1111/j.1365-2818.2006.01706.x CrossRefGoogle Scholar
  34. 34.
    Manders EM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382CrossRefGoogle Scholar
  35. 35.
    Chen YT, Zang XF, Pan J, Zhu XL, Chen F, Chen ZB, Xu Y (2012) Expression patterns of histone deacetylases in experimental stroke and potential targets for neuroprotection. Clin Exp Pharmacol Physiol 39:751–758.  https://doi.org/10.1111/j.1440-1681.2012.05729.x CrossRefGoogle Scholar
  36. 36.
    Peng S, Zhao S, Yan F, Cheng J, Huang L, Chen H, Liu Q, Ji X et al (2015) HDAC2 selectively regulates FOXO3a-mediated gene transcription during oxidative stress-induced neuronal cell death. J Neurosci 35:1250–1259.  https://doi.org/10.1523/JNEUROSCI.2444-14.2015 CrossRefGoogle Scholar
  37. 37.
    Andrews RJ (1991) Transhemispheric diaschisis. A review and comment Stroke 22:943–949Google Scholar
  38. 38.
    Demyanenko S, Berezhnaya E, Neginskaya M, Rodkin S, Dzreyan V (2019) Pitinova M (2019) Сlass II histone deacetylases in the post-stroke recovery period-expression, cellular, and subcellular localization-promising targets for neuroprotection. J Cell Biochem.  https://doi.org/10.1002/jcb.29266

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Molecular Neurobiology, Academy of Biology and BiotechnologySouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations