Advertisement

Neuroprotective Properties of Xenon

  • Mervyn MazeEmail author
  • Timo Laitio
Article

Abstract

Xenon is a rare noble gas that was introduced into clinical practice more than 70 years ago. Xenon’s clinical properties are predicated by its ability to fit into preformed cavities of macromolecules thereby altering their biological functions. One such action targets the NMDA-subtype of the glutamate receptors thereby inhibiting its excitatory action. As the glutamate receptors are pivotal for both anesthesia and acute neurological injury, its clinical use has included both general anesthesia as well as neuroprotection. In this manuscript, the efficacy and safety of xenon in clinical trials that address both the anesthetic and neuroprotective applications are discussed. Because of the clinical safety of this chemically inert monatomic gas, the lack of an alternative for neuroprotection, and encouraging phase 2 trial data, a multinational pivotal randomized clinical trial (XePOHCAS) has been launched to assess the utility of xenon for patients that have been successfully resuscitated following an out of hospital cardiac arrest but still remain comatose, indicating ongoing neurological ischemic-perfusion injury. If successful, the trial will herald a new era of treatments for previously intractable conditions such as traumatic brain injury, ischemic and hemorrhagic strokes, and anesthetic-induced developmental neurotoxicity.

Keywords

Xenon Neuroprotection Medical application 

Notes

References

  1. 1.
    Dmochowski I (2009) Xenon out of its shell. Nat Chem 1(3):250CrossRefGoogle Scholar
  2. 2.
    Cullen SC, Gross EG (1951) The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science 113(2942):580–582CrossRefGoogle Scholar
  3. 3.
    Law LS, Lo EA, Gan TJ (2016) Xenon anesthesia: a systematic review and meta-analysis of randomized controlled trials. Anesth Analg 122(3):678–697CrossRefGoogle Scholar
  4. 4.
    Franks NP (2008) General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 9(5):370–386CrossRefGoogle Scholar
  5. 5.
    Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR (1998) How does xenon produce anaesthesia? Nature 396(6709):324CrossRefGoogle Scholar
  6. 6.
    Dickinson R, Peterson BK, Banks P, Simillis C, Martin JC, Valenzuela CA, Maze M, Franks NP (2007) Competitive inhibition at the glycine site of the N-methyl-d-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 107(5):756–767CrossRefGoogle Scholar
  7. 7.
    Gruss M, Mathie A, Lieb WR, Franks NP (2004) The two-pore-domain K(+) channels TREK-1 and TASK-3 are differentially modulated by copper and zinc. Mol Pharmacol 66(3):530–537PubMedGoogle Scholar
  8. 8.
    Bantel C, Maze M, Trapp S (2010) Noble gas xenon is a novel adenosine triphosphate-sensitive potassium channel opener. Anesthesiology 112(3):623–630CrossRefGoogle Scholar
  9. 9.
    Plougmann J, Astrup J, Pedersen J, Gyldensted C (1994) Effect of stable xenon inhalation on intracranial pressure during measurement of cerebral blood flow in head injury. J Neurosurg 81(6):822–828CrossRefGoogle Scholar
  10. 10.
    Lo EA, Law LS, Gan TJ (2016) Paradox of the incidence of postoperative nausea and vomiting after xenon-based anaesthesia. Br J Anaesth 116(6):881–883CrossRefGoogle Scholar
  11. 11.
    Goto T, Suwa K, Uezono S, Ichinose F, Uchiyama M, Morita S (1998) The blood-gas partition coefficient of xenon may be lower than generally accepted. Br J Anaesth 80(2):255–256CrossRefGoogle Scholar
  12. 12.
    PMID: 27199321 (Lo, 2016, Br J Anaesth, Paradox of the incidence of postoperative nausea and vomiting after xenon-based anaesthesia) Need PMID for Lachmann 1990Google Scholar
  13. 13.
    Boomsma F, Rupreht J, Man in ‘t Veld AJ, de Jong FH, Dzoljic M, Lachmann B (1990) Haemodynamic and neurohumoral effects of xenon anaesthesia. A comparison with nitrous oxide. Anaesthesia 45(4):273–278CrossRefGoogle Scholar
  14. 14.
    Luttropp HH, Romner B, Perhag L, Eskilsson J, Fredriksen S, Werner O (1993) Left ventricular performance and cerebral haemodynamics during xenon anaesthesia. A transoesophageal echocardiography and transcranial Doppler sonography study. Anaesthesia 48(12):1045–1049CrossRefGoogle Scholar
  15. 15.
    Rossaint R, Reyle-Hahn M, Schulte Am Esch J, Scholz J, Scherpereel P, Vallet B, Giunta F, Del Turco M et al (2003) Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology 98(1):6–13CrossRefGoogle Scholar
  16. 16.
    Coburn M, Kunitz O, Baumert JH, Hecker K, Haaf S, Zühlsdorff A, Beeker T, Rossaint R (2005) Randomized controlled trial of the haemodynamic and recovery effects of xenon or propofol anaesthesia. Br J Anaesth 94(2):198–202CrossRefGoogle Scholar
  17. 17.
    Wappler F, Rossaint R, Baumert J, Scholz J, Tonner PH, van Aken H, Berendes E, Klein J et al (2007) Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anesthesiology 106(3):463–471CrossRefGoogle Scholar
  18. 18.
    Dingley J, King R, Hughes L, Terblanche C, Mahon S, Hepp M, Youhana A, Watkins A (2001) Exploration of xenon as a potential cardiostable sedative: a comparison with propofol after cardiac surgery. Anaesthesia 56(9):829–835CrossRefGoogle Scholar
  19. 19.
    Goto T, Hanne P, Ishiguro Y, Ichinose F, Niimi Y, Morita S (2004) Cardiovascular effects of xenon and nitrous oxide in patients during fentanyl-midazolam anaesthesia. Anaesthesia 59(12):1178–1183CrossRefGoogle Scholar
  20. 20.
    Lockwood GG, Franks NP, Downie NA, Taylor KM, Maze M (2006) Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: phase I study. Anesthesiology 104(3):458–465CrossRefGoogle Scholar
  21. 21.
    Baumert JH, Hecker KE, Hein M, Reyle-Hahn M, Horn NA, Rossaint R (2005) Effects of xenon anaesthesia on the circulatory response to hypoventilation. Br J Anaesth 95(2):166–171CrossRefGoogle Scholar
  22. 22.
    Rex S, Schaefer W, Meyer PH, Rossaint R, Boy C, Setani K, Büll U, Baumert JH (2006) Positron emission tomography study of regional cerebral metabolism during general anesthesia with xenon in humans. Anesthesiology 105(5):936–943CrossRefGoogle Scholar
  23. 23.
    Laitio RM, Kaisti KK, Låangsjö JW, Aalto S, Salmi E, Maksimow A, Aantaa R, Oikonen V et al (2007) Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 106(6):1128–1133CrossRefGoogle Scholar
  24. 24.
    Laitio RM, Långsjö JW, Aalto S, Kaisti KK, Salmi E, Maksimow A, Aantaa R, Oikonen V et al (2009) The effects of xenon anesthesia on the relationship between cerebral glucose metabolism and blood flow in healthy subjects: a positron emission tomography study. Anesth Analg 108(2):593–600CrossRefGoogle Scholar
  25. 25.
    Giller CA, Purdy P, Lindstrom WW (1990) Effects of inhaled stable xenon on cerebral blood flow velocity. AJNR Am J Neuroradiol 11(1):177–182PubMedGoogle Scholar
  26. 26.
    Azzopardi D, Robertson NJ, Kapetanakis A, Griffiths J, Rennie JM, Mathieson SR, Edwards AD (2013) Anticonvulsant effect of xenon on neonatal asphyxial seizures. Arch Dis Child Fetal Neonatal Ed 98(5):F437–F439CrossRefGoogle Scholar
  27. 27.
    Choi DW, Koh JY, Peters S (1988) Pharmacology of glutamate neurotoxicity in cortical cell culture: attenuation by NMDA antagonists. J Neurosci 8(1):185–196CrossRefGoogle Scholar
  28. 28.
    Wilhelm S, Ma D, Maze M, Franks NP (2002) Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology 96(6):1485–1491CrossRefGoogle Scholar
  29. 29.
    Petzelt C, Blom P, Schmehl W, Müller J, Kox WJ (2003) Prevention of neurotoxicity in hypoxic cortical neurons by the noble gas xenon. Life Sci 72(17):1909–1918CrossRefGoogle Scholar
  30. 30.
    David HN, Leveille F, Chazalviel L, MacKenzie ET, Buisson A, Lemaire M, Abraini JH (2003) Reduction of ischemic brain damage by nitrous oxide and xenon. J Cereb Blood Flow Metab 23(10):1168–1173CrossRefGoogle Scholar
  31. 31.
    Nagata A, Nakao Si S, Nishizawa N, Masuzawa M, Inada T, Murao K, Miyamoto E, Shingu K (2001) Xenon inhibits but N(2)O enhances ketamine-induced c-Fos expression in the rat posterior cingulate and retrosplenial cortices. Anesth Analg 92(2):362–368CrossRefGoogle Scholar
  32. 32.
    Ma D, Lim T, Xu J, Tang H, Wan Y, Zhao H, Hossain M, Maxwell PH et al (2009) Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol 20(4):713–720CrossRefGoogle Scholar
  33. 33.
    Stoppe C, Ney J, Brenke M, Goetzenich A, Emontzpohl C, Schälte G, Grottke O, Moeller M et al (2016) Sub-anesthetic xenon increases erythropoietin levels in humans: a randomized controlled trial. Sports Med 46(11):1753–1766CrossRefGoogle Scholar
  34. 34.
    Albers GW, Goldstein LB, Hess DC, Wechsler LR, Furie KL, Gorelick PB, Hurn P, Liebeskind DS et al (2011) Stroke Treatment Academic Industry Roundtable (STAIR) recommendations for maximizing the use of intravenous thrombolytics and expanding treatment options with intra-arterial and neuroprotective therapies. Stroke 42(9):2645–2650CrossRefGoogle Scholar
  35. 35.
    Fries M, Nolte KW, Coburn M, Rex S, Timper A, Kottmann K, Siepmann K, Häusler M et al (2008) Xenon reduces neurohistopathological damage and improves the early neurological deficit after cardiac arrest in pigs. Crit Care Med 36(8):2420–2426CrossRefGoogle Scholar
  36. 36.
    Fries M, Brücken A, Çizen A, Westerkamp M, Löwer C, Deike-Glindemann J, Schnorrenberger NK, Rex S et al (2012) Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med 40(4):1297–1303CrossRefGoogle Scholar
  37. 37.
    Ma D, Hossain M, Chow A, Arshad M, Battson RM, Sanders RD, Mehmet H, Edwards AD et al (2005) Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 58(2):182–193CrossRefGoogle Scholar
  38. 38.
    Martin JL, Ma D, Hossain M, Xu J, Sanders RD, Franks NP, Maze M (2007) Asynchronous administration of xenon and hypothermia significantly reduces brain infarction in the neonatal rat. Br J Anaesth 98(2):236–240CrossRefGoogle Scholar
  39. 39.
    Arola OJ, Laitio RM, Roine RO, Grönlund J, Saraste A, Pietilä M, Airaksinen J, Perttilä J et al (2013) Feasibility and cardiac safety of inhaled xenon in combination with therapeutic hypothermia following out-of-hospital cardiac arrest. Crit Care Med 41(9):2116–2124CrossRefGoogle Scholar
  40. 40.
    Laitio R, Hynninen M, Arola O, Virtanen S, Parkkola R, Saunavaara J, Roine RO, Grönlund J et al (2016) Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 315(11):1120–1128CrossRefGoogle Scholar
  41. 41.
    Arola O, Saraste A, Laitio R, Airaksinen J, Hynninen M, Bäcklund M, Ylikoski E, Wennervirta J et al (2017) Inhaled xenon attenuates myocardial damage in comatose survivors of out-of-hospital cardiac arrest: the Xe-Hypotheca trial. J Am Coll Cardiol 70(21):2652–2660CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Cerebrovascular Research, Department of Anesthesia and Perioperative CareUCSFSan FranciscoUSA
  2. 2.Division of Perioperative Services, Intensive Care Medicine and Pain Management, Turku University HospitalUniversity of TurkuTurkuFinland

Personalised recommendations