Advertisement

Injury-Induced Effectors of Neuropathic Pain

  • Damien P. KufflerEmail author
Article
  • 53 Downloads

Abstract

Injuries typically result in the development of neuropathic pain, which decreases in parallel with wound healing. However, the pain may remain after the injury appears to have healed, which is generally associated with an ongoing underlying pro-inflammatory state. Injury induces many cells to release factors that contribute to the development of a pro-inflammatory state, which is considered an essential first step towards wound healing. However, pain elimination requires a transition of the injury site from pro- to anti-inflammatory. Therefore, developing techniques that eliminate chronic pain require an understanding of the cells resident at and recruited to injury sites, the factors they release, that promote a pro-inflammatory state, and promote the subsequent transition of that site to be anti-inflammatory. Although a relatively large number of cells, factors, and gene expression changes are involved in these processes, it may be possible to control a relatively small number of them leading to the reduction and elimination of chronic neuropathic pain. This first of two papers examines the roles of the most salient cells and mediators associated with the development and maintenance of chronic neuropathic pain. The following paper examines the cells and mediators involved in reducing and eliminating chronic neuropathic pain.

Keywords

Nerve injury Inflammation Cytokines Pro-inflammatory mediators Voltage-gated ion channels 

Notes

References

  1. 1.
    Vranken JH (2009) Mechanisms and treatment of neuropathic pain. Cent Nerv Syst Agents Med Chem 9:71–78CrossRefGoogle Scholar
  2. 2.
    Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A et al (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002.  https://doi.org/10.1038/nrdp.2017.2 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yawn BP, Wollan PC, Weingarten TN, Watson JC, Hooten WM, Melton LJ 3rd. (2009) The prevalence of neuropathic pain: clinical evaluation compared with screening tools in a community population. Pain Med 10:586–593.  https://doi.org/10.1111/j.1526-4637.2009.00588.x CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    DiBonaventura MD, Sadosky A, Concialdi K, Hopps M, Kudel I, Parsons B, Cappelleri JC, Hlavacek P et al (2017) The prevalence of probable neuropathic pain in the US: results from a multimodal general-population health survey. J Pain Res 10:2525–2538.  https://doi.org/10.2147/JPR.S127014 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wei Z, Fei Y, Su W, Chen G (2019) Emerging role of Schwann cells in neuropathic pain: receptors, glial mediators and myelination. Front Cell Neurosci 13:116.  https://doi.org/10.3389/fncel.2019.00116 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron. 52:77–92.  https://doi.org/10.1016/j.neuron.2006.09.021 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Meacham K, Shepherd A, Mohapatra DP, Haroutounian S. (2017) Neuropathic pain: central vs. peripheral mechanisms. Curr Pain Headache Rep. 21:28.  https://doi.org/10.1007/s11916-017-0629-5
  8. 8.
    Xie WR, Deng H, Li H, Bowen TL, Strong JA, Zhang JM (2006) Robust increase of cutaneous sensitivity, cytokine production and sympathetic sprouting in rats with localized inflammatory irritation of the spinal ganglia. Neuroscience. 142:809–822.  https://doi.org/10.1016/j.neuroscience.2006.06.045 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhang JM, An J (2007) Cytokines, inflammation, and pain. Int Anesthesiol Clin 45:27–37.  https://doi.org/10.1097/AIA.0b013e318034194e CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Berta T, Perrin FE, Pertin M, Tonello R, Liu YC, Chamessian A, Kato AC, Ji RR et al (2017) Gene expression profiling of cutaneous injured and non-injured nociceptors in SNI animal model of neuropathic pain. Sci Rep 7:9367.  https://doi.org/10.1038/s41598-017-08865-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wu S, Marie Lutz B, Miao X, Liang L, Mo K, Chang YJ, Du P, Soteropoulos P et al (2016) Dorsal root ganglion transcriptome analysis following peripheral nerve injury in mice. Mol Pain 12.  https://doi.org/10.1177/1744806916629048 CrossRefGoogle Scholar
  12. 12.
    Shamash S, Reichert F, Rotshenker S (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22:3052–3060 https://doi.org/20026249 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Zedler S, Faist E (2006) The impact of endogenous triggers on trauma-associated inflammation. Curr Opin Crit Care 12:595–601.  https://doi.org/10.1097/MCC.0b013e3280106806 CrossRefGoogle Scholar
  14. 14.
    Rotshenker S (2011) Wallerian degeneration: the innate-immune response to traumatic nerve injury. J Neuroinflammation 8:109.  https://doi.org/10.1186/1742-2094-8-109 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32.  https://doi.org/10.1016/j.smim.2006.12.004 CrossRefGoogle Scholar
  16. 16.
    Lee H, Jo EK, Choi SY, Oh SB, Park K, Kim JS, Lee SJ (2006) Necrotic neuronal cells induce inflammatory Schwann cell activation via TLR2 and TLR3: implication in Wallerian degeneration. Biochem Biophys Res Commun 350:742–747.  https://doi.org/10.1016/j.bbrc.2006.09.108 CrossRefGoogle Scholar
  17. 17.
    Martini R, Fischer S, Lopez-Vales R, David S (2008) Interactions between Schwann cells and macrophages in injury and inherited demyelinating disease. Glia. 56:1566–1577.  https://doi.org/10.1002/glia.20766 CrossRefGoogle Scholar
  18. 18.
    Pineau I, Lacroix S (2009) Endogenous signals initiating inflammation in the injured nervous system. Glia. 57:351–361.  https://doi.org/10.1002/glia.20763 CrossRefGoogle Scholar
  19. 19.
    DeFrancesco-Lisowitz A, Lindborg JA, Niemi JP, Zigmond RE (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience. 302:174–203.  https://doi.org/10.1016/j.neuroscience.2014.09.027 CrossRefGoogle Scholar
  20. 20.
    Gaudet AD, Popovich PG, Ramer MS (2011) Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J Neuroinflammation 8:110.  https://doi.org/10.1186/1742-2094-8-110 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Palomo J, Dietrich D, Martin P, Palmer G, Gabay C (2015) The interleukin (IL)-1 cytokine family--balance between agonists and antagonists in inflammatory diseases. Cytokine. 76:25–37.  https://doi.org/10.1016/j.cyto.2015.06.017 CrossRefGoogle Scholar
  22. 22.
    De S, Trigueros MA, Kalyvas A, David S (2003) Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol Cell Neurosci 24:753–765CrossRefGoogle Scholar
  23. 23.
    Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, Brenner GJ, Ji RR et al (2008) Nociceptors are interleukin-1beta sensors. J Neurosci 28:14062–14073.  https://doi.org/10.1523/JNEUROSCI.3795-08.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Uceyler N, Tscharke A, Sommer C (2007) Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain Behav Immun 21:553–560.  https://doi.org/10.1016/j.bbi.2006.10.003 CrossRefGoogle Scholar
  25. 25.
    Wu R, Chen B, Jia X, Qiu Y, Liu M, Huang C, Feng J, Wu Q (2019) Interleukin-1beta influences functional regeneration following nerve injury in mice through nuclear factor-kappaB signaling pathway. Immunology. 156:235–248.  https://doi.org/10.1111/imm.13022 CrossRefGoogle Scholar
  26. 26.
    Ozaktay AC, Kallakuri S, Takebayashi T, Cavanaugh JM, Asik I, DeLeo JA, Weinstein JN (2006) Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J 15:1529–1537.  https://doi.org/10.1007/s00586-005-0058-8 CrossRefGoogle Scholar
  27. 27.
    Mietto BS, Jurgensen S, Alves L, Pecli C, Narciso MS, Assuncao-Miranda I, Villa-Verde DM, de Souza Lima FR et al (2013) Lack of galectin-3 speeds Wallerian degeneration by altering TLR and pro-inflammatory cytokine expressions in injured sciatic nerve. Eur J Neurosci 37:1682–1690.  https://doi.org/10.1111/ejn.12161 CrossRefGoogle Scholar
  28. 28.
    Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA et al (2011) IL-1alpha and IL-1beta recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol 187:4835–4843.  https://doi.org/10.4049/jimmunol.1102048 CrossRefGoogle Scholar
  29. 29.
    Schenk M, Fabri M, Krutzik SR, Lee DJ, Vu DM, Sieling PA, Montoya D, Liu PT et al (2014) Interleukin-1beta triggers the differentiation of macrophages with enhanced capacity to present mycobacterial antigen to T cells. Immunology. 141:174–180.  https://doi.org/10.1111/imm.12167 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, van de Veerdonk FL, Ferwerda G et al (2009) Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood. 113:2324–2335.  https://doi.org/10.1182/blood-2008-03-146720 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sung CS, Wen ZH, Chang WK, Ho ST, Tsai SK, Chang YC, Wong CS (2004) Intrathecal interleukin-1beta administration induces thermal hyperalgesia by activating inducible nitric oxide synthase expression in the rat spinal cord. Brain Res 1015:145–153.  https://doi.org/10.1016/j.brainres.2004.04.068 CrossRefGoogle Scholar
  32. 32.
    Schafers M, Sorkin L (2008) Effect of cytokines on neuronal excitability. Neurosci Lett 437:188–193.  https://doi.org/10.1016/j.neulet.2008.03.052 CrossRefGoogle Scholar
  33. 33.
    Perrin FE, Lacroix S, Aviles-Trigueros M, David S (2005) Involvement of monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1beta in Wallerian degeneration. Brain. 128:854–866.  https://doi.org/10.1093/brain/awh407 CrossRefGoogle Scholar
  34. 34.
    Cunha JM, Cunha FQ, Poole S, Ferreira SH (2000) Cytokine-mediated inflammatory hyperalgesia limited by interleukin-1 receptor antagonist. Br J Pharmacol 130:1418–1424.  https://doi.org/10.1038/sj.bjp.0703434 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sweitzer S, Martin D, DeLeo JA (2001) Intrathecal interleukin-1 receptor antagonist in combination with soluble tumor necrosis factor receptor exhibits an anti-allodynic action in a rat model of neuropathic pain. Neuroscience 103:529–539CrossRefGoogle Scholar
  36. 36.
    Chistiakov DA, Voronova NV, Chistiakov PA (2008) The crucial role of IL-2/IL-2RA-mediated immune regulation in the pathogenesis of type 1 diabetes, an evidence coming from genetic and animal model studies. Immunol Lett 118:1–5.  https://doi.org/10.1016/j.imlet.2008.03.002 CrossRefGoogle Scholar
  37. 37.
    Hoyer KK, Dooms H, Barron L, Abbas AK (2008) Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 226:19–28.  https://doi.org/10.1111/j.1600-065X.2008.00697.x CrossRefGoogle Scholar
  38. 38.
    Seelaender M, Neto JC, Pimentel GD, Goldszmid RS, Lira FS (2015) Inflammation in the disease: mechanism and therapies 2014. Mediat Inflamm 2015:169852.  https://doi.org/10.1155/2015/169852 CrossRefGoogle Scholar
  39. 39.
    Lan RY, Selmi C, Gershwin ME (2008) The regulatory, inflammatory, and T cell programming roles of interleukin-2 (IL-2). J Autoimmun 31:7–12.  https://doi.org/10.1016/j.jaut.2008.03.002 CrossRefGoogle Scholar
  40. 40.
    Sommer C, Kress M (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 361:184–187.  https://doi.org/10.1016/j.neulet.2003.12.007 CrossRefGoogle Scholar
  41. 41.
    Ko JS, Eddinger KA, Angert M, Chernov AV, Dolkas J, Strongin AY, Yaksh TL, Shubayev VI (2016) Spinal activity of interleukin 6 mediates myelin basic protein-induced allodynia. Brain Behav Immun 56:378–389.  https://doi.org/10.1016/j.bbi.2016.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Nadeau S, Filali M, Zhang J, Kerr BJ, Rivest S, Soulet D, Iwakura Y, de Rivero Vaccari JP et al (2011) Functional recovery after peripheral nerve injury is dependent on the pro-inflammatory cytokines IL-1beta and TNF: implications for neuropathic pain. J Neurosci 31:12533–12542.  https://doi.org/10.1523/JNEUROSCI.2840-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zang Y, Chen SX, Liao GJ, Zhu HQ, Wei XH, Cui Y, Na XD, Pang RP et al (2015) Calpain-2 contributes to neuropathic pain following motor nerve injury via up-regulating interleukin-6 in DRG neurons. Brain Behav Immun 44:37–47.  https://doi.org/10.1016/j.bbi.2014.08.003 CrossRefGoogle Scholar
  44. 44.
    Menezes GD, Goulart VG, Espirito-Santo S, Oliveira-Silva P, Serfaty CA, Campello-Costa P (2016) Intravitreous injection of interleukin-6 leads to a sprouting in the retinotectal pathway at different stages of development. Neuroimmunomodulation. 23:81–87.  https://doi.org/10.1159/000444529 CrossRefGoogle Scholar
  45. 45.
    Zhou YQ, Liu Z, Liu ZH, Chen SP, Li M, Shahveranov A, Ye DW, Tian YK (2016) Interleukin-6: an emerging regulator of pathological pain. J Neuroinflammation 13:141.  https://doi.org/10.1186/s12974-016-0607-6 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Arruda JL, Sweitzer S, Rutkowski MD, DeLeo JA (2000) Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res 879:216–225.  https://doi.org/10.1016/s0006-8993(00)02807-9 CrossRefGoogle Scholar
  47. 47.
    De Jongh RF, Vissers KC, Meert TF, Booij LH, De Deyne CS, Heylen RJ (2003) The role of interleukin-6 in nociception and pain. Anesth Analg 96:1096–1103 table of contentsCrossRefGoogle Scholar
  48. 48.
    Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF et al (2008) The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 137:81–95.  https://doi.org/10.1016/j.pain.2007.08.017 CrossRefGoogle Scholar
  49. 49.
    Shubayev VI, Myers RR (2000) Upregulation and interaction of TNFalpha and gelatinases A and B in painful peripheral nerve injury. Brain Res 855:83–89CrossRefGoogle Scholar
  50. 50.
    Tao T, Ji Y, Cheng C, Yang H, Liu H, Sun L, Qin Y, Yang J et al (2009) Tumor necrosis factor-alpha inhibits Schwann cell proliferation by up-regulating Src-suppressed protein kinase C substrate expression. J Neurochem 111:647–655.  https://doi.org/10.1111/j.1471-4159.2009.06346.x CrossRefGoogle Scholar
  51. 51.
    Eming SA, Krieg T, Davidson JM (2007) Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 127:514–525.  https://doi.org/10.1038/sj.jid.5700701 CrossRefGoogle Scholar
  52. 52.
    Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology. 115:1–20.  https://doi.org/10.1111/j.1365-2567.2005.02143.x CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chadwick W, Magnus T, Martin B, Keselman A, Mattson MP, Maudsley S (2008) Targeting TNF-alpha receptors for neurotherapeutics. Trends Neurosci 31:504–511.  https://doi.org/10.1016/j.tins.2008.07.005 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Romero-Sandoval EA, McCall C, Eisenach JC (2005) Alpha2-adrenoceptor stimulation transforms immune responses in neuritis and blocks neuritis-induced pain. J Neurosci 25:8988–8994.  https://doi.org/10.1523/JNEUROSCI.2995-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Liefner M, Siebert H, Sachse T, Michel U, Kollias G, Bruck W (2000) The role of TNF-alpha during Wallerian degeneration. J Neuroimmunol 108:147–152CrossRefGoogle Scholar
  56. 56.
    Ohtori S, Takahashi K, Moriya H, Myers RR (2004) TNF-alpha and TNF-alpha receptor type 1 upregulation in glia and neurons after peripheral nerve injury: studies in murine DRG and spinal cord. Spine (Phila Pa 1976) 29:1082–1088CrossRefGoogle Scholar
  57. 57.
    Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature. 440:1054–1059.  https://doi.org/10.1038/nature04671 CrossRefGoogle Scholar
  58. 58.
    Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M (2008) Transient early expression of TNF-alpha in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett 436:210–213.  https://doi.org/10.1016/j.neulet.2008.03.023 CrossRefGoogle Scholar
  59. 59.
    Zhang JM, Li H, Liu B, Brull SJ (2002) Acute topical application of tumor necrosis factor alpha evokes protein kinase A-dependent responses in rat sensory neurons. J Neurophysiol 88:1387–1392.  https://doi.org/10.1152/jn.2002.88.3.1387 CrossRefGoogle Scholar
  60. 60.
    Khan AA, Diogenes A, Jeske NA, Henry MA, Akopian A, Hargreaves KM (2008) Tumor necrosis factor alpha enhances the sensitivity of rat trigeminal neurons to capsaicin. Neuroscience. 155:503–509.  https://doi.org/10.1016/j.neuroscience.2008.05.036 CrossRefGoogle Scholar
  61. 61.
    Sorkin LS, Doom CM (2000) Epineurial application of TNF elicits an acute mechanical hyperalgesia in the awake rat. J Peripher Nerv Syst 5:96–100CrossRefGoogle Scholar
  62. 62.
    Gruber-Schoffnegger D, Drdla-Schutting R, Honigsperger C, Wunderbaldinger G, Gassner M, Sandkuhler J (2013) Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-alpha and IL-1beta is mediated by glial cells. J Neurosci 33:6540–6551.  https://doi.org/10.1523/JNEUROSCI.5087-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Woolf CJ, Allchorne A, Safieh-Garabedian B, Poole S (1997) Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol 121:417–424.  https://doi.org/10.1038/sj.bjp.0701148 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wagner R, Myers RR (1996) Endoneurial injection of TNF-alpha produces neuropathic pain behaviors. Neuroreport 7:2897–2901CrossRefGoogle Scholar
  65. 65.
    Schafers M, Svensson CI, Sommer C, Sorkin LS (2003) Tumor necrosis factor-alpha induces mechanical allodynia after spinal nerve ligation by activation of p38 MAPK in primary sensory neurons. J Neurosci 23:2517–2521CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Charles P, Elliott MJ, Davis D, Potter A, Kalden JR, Antoni C, Breedveld FC, Smolen JS et al (1999) Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J Immunol 163:1521–1528Google Scholar
  67. 67.
    Scallon BJ, Moore MA, Trinh H, Knight DM, Ghrayeb J (1995) Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions. Cytokine. 7:251–259.  https://doi.org/10.1006/cyto.1995.0029 CrossRefGoogle Scholar
  68. 68.
    Baert FJ, D'Haens GR, Peeters M, Hiele MI, Schaible TF, Shealy D, Geboes K, Rutgeerts PJ (1999) Tumor necrosis factor alpha antibody (infliximab) therapy profoundly down-regulates the inflammation in Crohn's ileocolitis. Gastroenterology. 116:22–28CrossRefGoogle Scholar
  69. 69.
    Einheber S, Hannocks MJ, Metz CN, Rifkin DB, Salzer JL (1995) Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J Cell Biol 129:443–458CrossRefGoogle Scholar
  70. 70.
    Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB (1991) Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience. 44:613–625CrossRefGoogle Scholar
  71. 71.
    Eppley BL, Woodell JE, Higgins J (2004) Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast Reconstr Surg 114:1502–1508CrossRefGoogle Scholar
  72. 72.
    Rolfe KJ, Richardson J, Vigor C, Irvine LM, Grobbelaar AO, Linge C (2007) A role for TGF-beta1-induced cellular responses during wound healing of the non-scarring early human fetus? J Invest Dermatol 127:2656–2667.  https://doi.org/10.1038/sj.jid.5700951 CrossRefGoogle Scholar
  73. 73.
    Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289CrossRefGoogle Scholar
  74. 74.
    Nikolidakis D, Jansen JA (2008) The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng Part B Rev 14:249–258.  https://doi.org/10.1089/ten.teb.2008.0062 CrossRefGoogle Scholar
  75. 75.
    Li AG, Wang D, Feng XH, Wang XJ (2004) Latent TGFbeta1 overexpression in keratinocytes results in a severe psoriasis-like skin disorder. EMBO J 23:1770–1781.  https://doi.org/10.1038/sj.emboj.7600183 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161.  https://doi.org/10.1146/annurev.immunol.16.1.137 CrossRefGoogle Scholar
  77. 77.
    Marek A, Brodzicki J, Liberek A, Korzon M (2002) TGF-beta (transforming growth factor-beta) in chronic inflammatory conditions - a new diagnostic and prognostic marker? Med Sci Monit 8:RA145–RA151Google Scholar
  78. 78.
    Lawrence T, Willoughby DA, Gilroy DW (2002) Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2:787–795.  https://doi.org/10.1038/nri915 CrossRefGoogle Scholar
  79. 79.
    Borkowski TA, Letterio JJ, Mackall CL, Saitoh A, Farr AG, Wang XJ, Roop DR, Gress RE et al (1997) Langerhans cells in the TGF beta 1 null mouse. Adv Exp Med Biol 417:307–310CrossRefGoogle Scholar
  80. 80.
    Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5:40–46.  https://doi.org/10.1046/j.1087-0024.2000.00014.x CrossRefGoogle Scholar
  81. 81.
    Riedel K, Riedel F, Goessler UR, Germann G, Sauerbier M (2007) Tgf-beta antisense therapy increases angiogenic potential in human keratinocytes in vitro. Arch Med Res 38:45–51.  https://doi.org/10.1016/j.arcmed.2006.04.010 CrossRefGoogle Scholar
  82. 82.
    Morrissey JH, Choi SH, Smith SA (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood. 119:5972–5979.  https://doi.org/10.1182/blood-2012-03-306605 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Smith SA, Morrissey JH (2014) Polyphosphate: a new player in the field of hemostasis. Curr Opin Hematol 21:388–394.  https://doi.org/10.1097/MOH.0000000000000069 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Travers RJ, Smith SA, Morrissey JH (2015) Polyphosphate, platelets, and coagulation. Int J Lab Hematol 37(Suppl 1):31–35.  https://doi.org/10.1111/ijlh.12349 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Bae JS, Lee W, Rezaie AR (2012) Polyphosphate elicits pro-inflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost 10:1145–1151.  https://doi.org/10.1111/j.1538-7836.2012.04671.x CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Gora S, Lambeau G, Bollinger JG, Gelb M, Ninio E, Karabina SA (2006) The proinflammatory mediator platelet activating factor is an effective substrate for human group X secreted phospholipase A2. Biochim Biophys Acta 1761:1093–1099.  https://doi.org/10.1016/j.bbalip.2006.08.004 CrossRefGoogle Scholar
  87. 87.
    Dinarvand P, Hassanian SM, Qureshi SH, Manithody C, Eissenberg JC, Yang L, Rezaie AR (2014) Polyphosphate amplifies proinflammatory responses of nuclear proteins through interaction with receptor for advanced glycation end products and P2Y1 purinergic receptor. Blood. 123:935–945.  https://doi.org/10.1182/blood-2013-09-529602 CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Hassanian SM, Dinarvand P, Smith SA, Rezaie AR (2015) Inorganic polyphosphate elicits pro-inflammatory responses through activation of the mammalian target of rapamycin complexes 1 and 2 in vascular endothelial cells. J Thromb Haemost 13:860–871.  https://doi.org/10.1111/jth.12899 CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Tak PP, Firestein GS (2001) NF-kappaB: a key role in inflammatory diseases. J Clin Invest 107:7–11.  https://doi.org/10.1172/JCI11830 CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, Esmon CT (2011) Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood. 118:1952–1961.  https://doi.org/10.1182/blood-2011-03-343061 CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Beaulieu LM, Freedman JE (2011) Inflammation & the platelet histone trap. Blood. 118:1714–1715.  https://doi.org/10.1182/blood-2011-06-362764 CrossRefGoogle Scholar
  92. 92.
    Bordon Y (2018) Innate immunity: platelets on the prowl. Nat Rev Immunol 18:3.  https://doi.org/10.1038/nri.2017.147 CrossRefGoogle Scholar
  93. 93.
    Conti G, Rostami A, Scarpini E, Baron P, Galimberti D, Bresolin N, Contri M, Palumbo C et al (2004) Inducible nitric oxide synthase (iNOS) in immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous system. Exp Neurol 187:350–358.  https://doi.org/10.1016/j.expneurol.2004.01.026 CrossRefGoogle Scholar
  94. 94.
    Laroux FS, Pavlick KP, Hines IN, Kawachi S, Harada H, Bharwani S, Hoffman JM, Grisham MB (2001) Role of nitric oxide in inflammation. Acta Physiol Scand 173:113–118.  https://doi.org/10.1046/j.1365-201X.2001.00891.x CrossRefGoogle Scholar
  95. 95.
    De Alba J, Clayton NM, Collins SD, Colthup P, Chessell I, Knowles RG (2006) GW274150, a novel and highly selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), shows analgesic effects in rat models of inflammatory and neuropathic pain. Pain. 120:170–181.  https://doi.org/10.1016/j.pain.2005.10.028 CrossRefGoogle Scholar
  96. 96.
    Makuch W, Mika J, Rojewska E, Zychowska M, Przewlocka B (2013) Effects of selective and non-selective inhibitors of nitric oxide synthase on morphine- and endomorphin-1-induced analgesia in acute and neuropathic pain in rats. Neuropharmacology 75:445–457.  https://doi.org/10.1016/j.neuropharm.2013.08.031 CrossRefGoogle Scholar
  97. 97.
    Conti A, Miscusi M, Cardali S, Germano A, Suzuki H, Cuzzocrea S, Tomasello F (2007) Nitric oxide in the injured spinal cord: synthases cross-talk, oxidative stress and inflammation. Brain Res Rev 54:205–218CrossRefGoogle Scholar
  98. 98.
    Lehmann HC, Kohne A, Meyer zu Horste G, Dehmel T, Kiehl O, Hartung HP, Kastenbauer S, Kieseier BC (2007) Role of nitric oxide as mediator of nerve injury in inflammatory neuropathies. J Neuropathol Exp Neurol 66:305–312.  https://doi.org/10.1097/nen.0b013e3180408daa CrossRefGoogle Scholar
  99. 99.
    Chatzipanteli K, Garcia R, Marcillo AE, Loor KE, Kraydieh S, Dietrich WD (2002) Temporal and segmental distribution of constitutive and inducible nitric oxide synthases after traumatic spinal cord injury: effect of aminoguanidine treatment. J Neurotrauma 19:639–651.  https://doi.org/10.1089/089771502753754109 CrossRefGoogle Scholar
  100. 100.
    Bode JG, Ehlting C, Haussinger D (2012) The macrophage response towards LPS and its control through the p38(MAPK)-STAT3 axis. Cell Signal 24:1185–1194.  https://doi.org/10.1016/j.cellsig.2012.01.018 CrossRefGoogle Scholar
  101. 101.
    Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ (2005) Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem Biophys Res Commun 334:1092–1101.  https://doi.org/10.1016/j.bbrc.2005.06.202 CrossRefGoogle Scholar
  102. 102.
    Claar D, Hartert TV, Peebles RS Jr (2015) The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev Respir Med 9:55–72.  https://doi.org/10.1586/17476348.2015.992783 CrossRefGoogle Scholar
  103. 103.
    Loynes CA, Lee JA, Robertson AL, Steel MJ, Ellett F, Feng Y, Levy BD, Whyte MKB et al (2018) PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Sci Adv 4:eaar8320.  https://doi.org/10.1126/sciadv.aar8320 CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kawabata A (2011) Prostaglandin E2 and pain--an update. Biol Pharm Bull 34:1170–1173CrossRefGoogle Scholar
  105. 105.
    Ricciotti E, FitzGerald GA (2011) Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 31:986–1000.  https://doi.org/10.1161/ATVBAHA.110.207449 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Ricciotti E, Yu Y, Grosser T, Fitzgerald GA (2013) COX-2, the dominant source of prostacyclin. Proc Natl Acad Sci U S A 110:E183.  https://doi.org/10.1073/pnas.1219073110 CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Lin CR, Amaya F, Barrett L, Wang H, Takada J, Samad TA, Woolf CJ (2006) Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J Pharmacol Exp Ther 319:1096–1103.  https://doi.org/10.1124/jpet.106.105569 CrossRefGoogle Scholar
  108. 108.
    Southall MD, Vasko MR (2001) Prostaglandin receptor subtypes, EP3C and EP4, mediate the prostaglandin E2-induced cAMP production and sensitization of sensory neurons. J Biol Chem 276:16083–16091.  https://doi.org/10.1074/jbc.M011408200 CrossRefGoogle Scholar
  109. 109.
    Kassuya CA, Ferreira J, Claudino RF, Calixto JB (2007) Intraplantar PGE2 causes nociceptive behaviour and mechanical allodynia: the role of prostanoid E receptors and protein kinases. Br J Pharmacol 150:727–737.  https://doi.org/10.1038/sj.bjp.0707149 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Garrido D, Chanteloup NK, Trotereau A, Lion A, Bailleul G, Esnault E, Trapp S, Quere P et al (2017) Characterization of the Phospholipid Platelet-Activating Factor As a Mediator of Inflammation in Chickens. Front Vet Sci 4:226.  https://doi.org/10.3389/fvets.2017.00226 CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Gomez FP, Rodriguez-Roisin R (2000) Platelet-activating factor antagonists: current status in asthma. Biodrugs. 14:21–30CrossRefGoogle Scholar
  112. 112.
    McIntyre TM, Prescott SM, Stafforini DM (2009) The emerging roles of PAF acetylhydrolase. J Lipid Res 50(Suppl):S255–S259.  https://doi.org/10.1194/jlr.R800024-JLR200 CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Papakonstantinou VD, Lagopati N, Tsilibary EC, Demopoulos CA, Philippopoulos AI (2017) A review on platelet activating factor inhibitors: could a new class of potent metal-based anti-inflammatory drugs induce anticancer properties? Bioinorg Chem Appl 2017:6947034.  https://doi.org/10.1155/2017/6947034 CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175.  https://doi.org/10.1038/nri3399 CrossRefGoogle Scholar
  115. 115.
    Babcock AA, Toft-Hansen H, Owens T (2008) Signaling through MyD88 regulates leukocyte recruitment after brain injury. J Immunol 181:6481–6490.  https://doi.org/10.4049/jimmunol.181.9.6481 CrossRefGoogle Scholar
  116. 116.
    Leick M, Azcutia V, Newton G, Luscinskas FW (2014) Leukocyte recruitment in inflammation: basic concepts and new mechanistic insights based on new models and microscopic imaging technologies. Cell Tissue Res 355:647–656.  https://doi.org/10.1007/s00441-014-1809-9 CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Rittner HL, Brack A (2007) Leukocytes as mediators of pain and analgesia. Curr Rheumatol Rep 9:503–510CrossRefGoogle Scholar
  118. 118.
    Rittner HL, Machelska H, Stein C (2005) Leukocytes in the regulation of pain and analgesia. J Leukoc Biol 78:1215–1222CrossRefGoogle Scholar
  119. 119.
    Jeanjean AP, Moussaoui SM, Maloteaux JM, Laduron PM (1995) Interleukin-1 beta induces long-term increase of axonally transported opiate receptors and substance P. Neuroscience. 68:151–157CrossRefGoogle Scholar
  120. 120.
    Schweizer A, Feige U, Fontana A, Muller K, Dinarello CA (1988) Interleukin-1 enhances pain reflexes. Mediation through increased prostaglandin E2 levels. Agents Actions 25:246–251CrossRefGoogle Scholar
  121. 121.
    Cao L, DeLeo JA (2008) CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur J Immunol 38:448–458.  https://doi.org/10.1002/eji.200737485 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lindborg JA, Mack M, Zigmond RE (2017) Neutrophils are critical for myelin removal in a peripheral nerve injury model of wallerian degeneration. J Neurosci 37:10258–10277.  https://doi.org/10.1523/JNEUROSCI.2085-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Hatanaka E, Monteagudo PT, Marrocos MS, Campa A (2006) Neutrophils and monocytes as potentially important sources of proinflammatory cytokines in diabetes. Clin Exp Immunol 146:443–447.  https://doi.org/10.1111/j.1365-2249.2006.03229.x CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Hatanaka E, Furlaneto CJ, Ribeiro FP, Souza GM, Campa A (2004) Serum amyloid A-induced mRNA expression and release of tumor necrosis factor-alpha (TNF-alpha) in human neutrophils. Immunol Lett 91:33–37CrossRefGoogle Scholar
  125. 125.
    Gougerot-Pocidalo MA, el Benna J, Elbim C, Chollet-Martin S, Dang MC (2002) Regulation of human neutrophil oxidative burst by pro- and anti-inflammatory cytokines. J Soc Biol 196:37–46CrossRefGoogle Scholar
  126. 126.
    Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, Muscoli C, Mollace V et al (2004) A newly identified role for superoxide in inflammatory pain. J Pharmacol Exp Ther 309:869–878.  https://doi.org/10.1124/jpet.103.064154 CrossRefGoogle Scholar
  127. 127.
    Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst 92:1210–1216CrossRefGoogle Scholar
  128. 128.
    Alhamdi Y, Toh CH (2016) The role of extracellular histones in haematological disorders. Br J Haematol 173:805–811.  https://doi.org/10.1111/bjh.14077 CrossRefGoogle Scholar
  129. 129.
    Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K et al (2013) Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 187:160–169.  https://doi.org/10.1164/rccm.201206-1037OC CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science. 303:1532–1535.  https://doi.org/10.1126/science.1092385 CrossRefGoogle Scholar
  131. 131.
    Chen R, Kang R, Fan XG, Tang D (2014) Release and activity of histone in diseases. Cell Death Dis 5:e1370.  https://doi.org/10.1038/cddis.2014.337 CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Xu J, Zhang X, Monestier M, Esmon NL, Esmon CT (2011) Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J Immunol 187:2626–2631.  https://doi.org/10.4049/jimmunol.1003930 CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349:316–320.  https://doi.org/10.1126/science.aaa8064 CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Chatterjea D, Martinov T (2015) Mast cells: versatile gatekeepers of pain. Mol Immunol 63:38–44.  https://doi.org/10.1016/j.molimm.2014.03.001 CrossRefGoogle Scholar
  135. 135.
    Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276.  https://doi.org/10.1038/nm.2234 CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Heron A, Dubayle D (2013) A focus on mast cells and pain. J Neuroimmunol 264:1–7.  https://doi.org/10.1016/j.jneuroim.2013.09.018 CrossRefGoogle Scholar
  137. 137.
    Mobarakeh JI, Sakurada S, Katsuyama S, Kutsuwa M, Kuramasu A, Lin ZY, Watanabe T, Hashimoto Y et al (2000) Role of histamine H(1) receptor in pain perception: a study of the receptor gene knockout mice. Eur J Pharmacol 391:81–89CrossRefGoogle Scholar
  138. 138.
    Zuo Y, Perkins NM, Tracey DJ, Geczy CL (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain. 105:467–479CrossRefGoogle Scholar
  139. 139.
    Parada CA, Tambeli CH, Cunha FQ, Ferreira SH (2001) The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience. 102:937–944CrossRefGoogle Scholar
  140. 140.
    Wang Y, Mao L, Zhang L, Zhang L, Yang M, Zhang Z, Li D, Fan C et al (2016) Adoptive Regulatory T-cell Therapy Attenuates Subarachnoid Hemor-rhage-induced Cerebral Inflammation by Suppressing TLR4/NF-B Signaling Pathway. Curr Neurovasc Res 13:121–126CrossRefGoogle Scholar
  141. 141.
    Sun T, Song WG, Fu ZJ, Liu ZH, Liu YM, Yao SL (2006) Alleviation of neuropathic pain by intrathecal injection of antisense oligonucleotides to p65 subunit of NF-kappaB. Br J Anaesth 97:553–558.  https://doi.org/10.1093/bja/ael209 CrossRefGoogle Scholar
  142. 142.
    Lee HL, Lee KM, Son SJ, Hwang SH, Cho HJ (2004) Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. Neuroreport. 15:2807–2811Google Scholar
  143. 143.
    Tegeder I, Niederberger E, Schmidt R, Kunz S, Guhring H, Ritzeler O, Michaelis M, Geisslinger G (2004) Specific Inhibition of IkappaB kinase reduces hyperalgesia in inflammatory and neuropathic pain models in rats. J Neurosci 24:1637–1645.  https://doi.org/10.1523/JNEUROSCI.3118-03.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Zhang X, Burstein R, Levy D (2012) Local action of the proinflammatory cytokines IL-1beta and IL-6 on intracranial meningeal nociceptors. Cephalalgia. 32:66–72.  https://doi.org/10.1177/0333102411430848 CrossRefGoogle Scholar
  145. 145.
    Moreno-Sanchez D, Hernandez-Ruiz L, Ruiz FA, Docampo R (2012) Polyphosphate is a novel pro-inflammatory regulator of mast cells and is located in acidocalcisomes. J Biol Chem 287:28435–28444.  https://doi.org/10.1074/jbc.M112.385823 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Park JE, Barbul A (2004) Understanding the role of immune regulation in wound healing. Am J Surg 187:11S–16S.  https://doi.org/10.1016/S0002-9610(03)00296-4 CrossRefGoogle Scholar
  147. 147.
    Schaffer M, Barbul A (1998) Lymphocyte function in wound healing and following injury. Br J Surg 85:444–460.  https://doi.org/10.1046/j.1365-2168.1998.00734.x CrossRefGoogle Scholar
  148. 148.
    Koyasu S, Moro K (2012) Role of innate lymphocytes in infection and inflammation. Front Immunol 3:101.  https://doi.org/10.3389/fimmu.2012.00101 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Mietelska-Porowska A, Wojda U (2017) T lymphocytes and inflammatory mediators in the interplay between brain and blood in Alzheimer’s disease: potential pools of new biomarkers. J Immunol Res 2017:4626540.  https://doi.org/10.1155/2017/4626540 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Moalem G, Xu K, Yu L (2004) T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience. 129:767–777.  https://doi.org/10.1016/j.neuroscience.2004.08.035 CrossRefGoogle Scholar
  151. 151.
    Barcelo B, Pons J, Fuster A, Sauleda J, Noguera A, Ferrer JM, Agusti AG (2006) Intracellular cytokine profile of T lymphocytes in patients with chronic obstructive pulmonary disease. Clin Exp Immunol 145:474–479.  https://doi.org/10.1111/j.1365-2249.2006.03167.x CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Liu Y, Wang L, Kikuiri T, Akiyama K, Chen C, Xu X, Yang R, Chen W et al (2011) Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat Med 17:1594–1601.  https://doi.org/10.1038/nm.2542 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Hodge G, Nairn J, Holmes M, Reynolds PN, Hodge S (2007) Increased intracellular T helper 1 proinflammatory cytokine production in peripheral blood, bronchoalveolar lavage and intraepithelial T cells of COPD subjects. Clin Exp Immunol 150:22–29.  https://doi.org/10.1111/j.1365-2249.2007.03451.x CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Chung KF (2001) Cytokines in chronic obstructive pulmonary disease. Eur Respir J Suppl 34:50s–59sCrossRefGoogle Scholar
  155. 155.
    Hata H, Yoshimoto T, Hayashi N, Hada T, Nakanishi K (2004) IL-18 together with anti-CD3 antibody induces human Th1 cells to produce Th1- and Th2-cytokines and IL-8. Int Immunol 16:1733–1739.  https://doi.org/10.1093/intimm/dxh174 CrossRefGoogle Scholar
  156. 156.
    Du JW, Xu KY, Fang LY, Qi XL (2012) Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Rep 6:1099–1102.  https://doi.org/10.3892/mmr.2012.1036 CrossRefGoogle Scholar
  157. 157.
    Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B (2011) IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 407:348–354.  https://doi.org/10.1016/j.bbrc.2011.03.021 CrossRefGoogle Scholar
  158. 158.
    Caron E, Self AJ, Hall A (2000) The GTPase Rap1 controls functional activation of macrophage integrin alphaMbeta2 by LPS and other inflammatory mediators. Curr Biol 10:974–978CrossRefGoogle Scholar
  159. 159.
    Golebiewska EM, Poole AW (2015) Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev 29:153–162.  https://doi.org/10.1016/j.blre.2014.10.003 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Horstman LL, Jy W, Ahn YS, Zivadinov R, Maghzi AH, Etemadifar M, Steven Alexander J, Minagar A (2010) Role of platelets in neuroinflammation: a wide-angle perspective. J Neuroinflammation 7:10.  https://doi.org/10.1186/1742-2094-7-10 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Gould TJ, Vu TT, Swystun LL, Dwivedi DJ, Mai SH, Weitz JI, Liaw PC (2014) Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 34:1977–1984.  https://doi.org/10.1161/ATVBAHA.114.304114 CrossRefGoogle Scholar
  162. 162.
    Brem H, Balledux J, Bloom T, Kerstein MD, Hollier L (2000) Healing of diabetic foot ulcers and pressure ulcers with human skin equivalent: a new paradigm in wound healing. Arch Surg 135:627–634CrossRefGoogle Scholar
  163. 163.
    Lin H, Chen B, Sun W, Zhao W, Zhao Y, Dai J (2006) The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27:5708–5714.  https://doi.org/10.1016/j.biomaterials.2006.07.023 CrossRefGoogle Scholar
  164. 164.
    Pietramaggiori G, Kaipainen A, Czeczuga JM, Wagner CT, Orgill DP (2006) Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds. Wound Repair Regen 14:573–580.  https://doi.org/10.1111/j.1743-6109.2006.00164.x CrossRefGoogle Scholar
  165. 165.
    Lederle W, Stark HJ, Skobe M, Fusenig NE, Mueller MM (2006) Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells. Am J Pathol 169:1767–1783.  https://doi.org/10.2353/ajpath.2006.060120 CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Han G, Li F, Singh TP, Wolf P, Wang XJ (2012) The pro-inflammatory role of TGFbeta1: a paradox? Int J Biol Sci 8:228–235CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Kovalsky Y, Amir R, Devor M (2009) Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain. J Neurophysiol 102:1430–1442.  https://doi.org/10.1152/jn.00005.2009 CrossRefGoogle Scholar
  168. 168.
    Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C, Wang X, Castro J, Garcia-Caraballo S et al (2016) Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature. 534:494–499.  https://doi.org/10.1038/nature17976 CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Yin R, Liu D, Chhoa M, Li CM, Luo Y, Zhang M, Lehto SG, Immke DC et al (2016) Voltage-gated sodium channel function and expression in injured and uninjured rat dorsal root ganglia neurons. Int J Neurosci 126:182–192.  https://doi.org/10.3109/00207454.2015.1004172 CrossRefGoogle Scholar
  170. 170.
    Basbaum AI, Braz JM, Transgenic mouse models for the tracing of “pain” pathways, in Translational pain research: from mouse to man, L Kruger and AR Light, Editors. 2010: Boca Raton, FL.Google Scholar
  171. 171.
    Cummins TR, Sheets PL, Waxman SG (2007) The roles of sodium channels in nociception: Implications for mechanisms of pain. Pain. 131:243–257.  https://doi.org/10.1016/j.pain.2007.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Osteen JD, Sampson K, Iyer V, Julius D, Bosmans F (2017) Pharmacology of the Nav1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 114:6836–6841.  https://doi.org/10.1073/pnas.1621263114 CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Zhu W, Oxford GS (2011) Differential gene expression of neonatal and adult DRG neurons correlates with the differential sensitization of TRPV1 responses to nerve growth factor. Neurosci Lett 500:192–196.  https://doi.org/10.1016/j.neulet.2011.06.034 CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Estacion M, Waxman SG (2013) The response of Na(V)1.3 sodium channels to ramp stimuli: multiple components and mechanisms. J Neurophysiol 109:306–314.  https://doi.org/10.1152/jn.00438.2012 CrossRefGoogle Scholar
  175. 175.
    Hains BC, Klein JP, Saab CY, Craner MJ, Black JA, Waxman SG (2003) Upregulation of sodium channel Nav1.3 and functional involvement in neuronal hyperexcitability associated with central neuropathic pain after spinal cord injury. J Neurosci 23:8881–8892CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Hains BC, Saab CY, Klein JP, Craner MJ, Waxman SG (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24:4832–4839.  https://doi.org/10.1523/JNEUROSCI.0300-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Loram LC, Harrison JA, Sloane EM, Hutchinson MR, Sholar P, Taylor FR, Berkelhammer D, Coats BD et al (2009) Enduring reversal of neuropathic pain by a single intrathecal injection of adenosine 2A receptor agonists: a novel therapy for neuropathic pain. J Neurosci 29:14015–14025.  https://doi.org/10.1523/JNEUROSCI.3447-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Samad OA, Tan AM, Cheng X, Foster E, Dib-Hajj SD, Waxman SG (2013) Virus-mediated shRNA knockdown of Na(v)1.3 in rat dorsal root ganglion attenuates nerve injury-induced neuropathic pain. Mol Ther 21:49–56.  https://doi.org/10.1038/mt.2012.169 CrossRefGoogle Scholar
  179. 179.
    Qin S, Jiang F, Zhou Y, Zhou G, Ye P, Ji Y (2017) Local knockdown of Nav1.6 relieves pain behaviors induced by BmK I. Acta Biochim Biophys Sin Shanghai 49:713–721.  https://doi.org/10.1093/abbs/gmx064 CrossRefGoogle Scholar
  180. 180.
    Xie W, Tan ZY, Barbosa C, Strong JA, Cummins TR, Zhang JM (2016) Upregulation of the sodium channel NaVbeta4 subunit and its contributions to mechanical hypersensitivity and neuronal hyperexcitability in a rat model of radicular pain induced by local dorsal root ganglion inflammation. Pain. 157:879–891.  https://doi.org/10.1097/j.pain.0000000000000453 CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Dib-Hajj SD, Yang Y, Black JA, Waxman SG (2013) The Na(V)1.7 sodium channel: from molecule to man. Nat Rev Neurosci 14:49–62.  https://doi.org/10.1038/nrn3404 CrossRefGoogle Scholar
  182. 182.
    Nassar MA, Stirling LC, Forlani G, Baker MD, Matthews EA, Dickenson AH, Wood JN (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A 101:12706–12711.  https://doi.org/10.1073/pnas.0404915101 CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Goldberg YP, MacFarlane J, MacDonald ML, Thompson J, Dube MP, Mattice M, Fraser R, Young C et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71:311–319.  https://doi.org/10.1111/j.1399-0004.2007.00790.x CrossRefGoogle Scholar
  184. 184.
    Smith BJ, Cote PD, Tremblay F (2017) Contribution of Nav1.8 sodium channels to retinal function. Neuroscience. 340:279–290.  https://doi.org/10.1016/j.neuroscience.2016.10.054 CrossRefGoogle Scholar
  185. 185.
    Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W et al (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci U S A 104:8520–8525.  https://doi.org/10.1073/pnas.0611364104 CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Thakor DK, Lin A, Matsuka Y, Meyer EM, Ruangsri S, Nishimura I, Spigelman I (2009) Increased peripheral nerve excitability and local NaV1.8 mRNA up-regulation in painful neuropathy. Mol Pain 5:14.  https://doi.org/10.1186/1744-8069-5-14 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG et al (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109:19444–19449.  https://doi.org/10.1073/pnas.1216080109 CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Sidaway P. (2014) Pain: Gain-of-function Nav1.9 mutations are associated with painful peripheral neuropathy. Nat Rev Neurol. 10:306.  https://doi.org/10.1038/nrneurol.2014.83 CrossRefGoogle Scholar
  189. 189.
    Dib-Hajj SD, Black JA, Waxman SG (2015) NaV1.9: a sodium channel linked to human pain. Nat Rev Neurosci 16:511–519.  https://doi.org/10.1038/nrn3977 CrossRefGoogle Scholar
  190. 190.
    Fang X, Djouhri L, McMullan S, Berry C, Waxman SG, Okuse K, Lawson SN (2006) Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J Neurosci 26:7281–7292.  https://doi.org/10.1523/JNEUROSCI.1072-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Qiu F, Jiang Y, Zhang H, Liu Y, Mi W (2012) Increased expression of tetrodotoxin-resistant sodium channels Nav1.8 and Nav1.9 within dorsal root ganglia in a rat model of bone cancer pain. Neurosci Lett 512:61–66.  https://doi.org/10.1016/j.neulet.2012.01.069 CrossRefGoogle Scholar
  192. 192.
    Lolignier S, Amsalem M, Maingret F, Padilla F, Gabriac M, Chapuy E, Eschalier A, Delmas P et al (2011) Nav19 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 6(e23083).  https://doi.org/10.1371/journal.pone.0023083 CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Amaya F, Wang H, Costigan M, Allchorne AJ, Hatcher JP, Egerton J, Stean T, Morisset V et al (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26:12852–12860.  https://doi.org/10.1523/JNEUROSCI.4015-06.2006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Neurobiology, Medical Sciences CampusUniversity of Puerto RicoSan JuanUSA

Personalised recommendations