Increased Mmp/Reck Expression Ratio Is Associated with Increased Recognition Memory Performance in a Parkinson’s Disease Animal Model

  • Adauto Spindola
  • Adriano D. S. Targa
  • Lais Soares Rodrigues
  • Sheila Maria Brochado Winnischofer
  • Marcelo M. S. Lima
  • Mari Cleide Sogayar
  • Marina Trombetta-LimaEmail author


Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Among its non-motor symptoms, sleep disorders are extremely common, being linked to cognitive and memory disruption. The microenvironment, particularly the extracellular matrix (ECM), is deeply involved in memory consolidation as well as in neuropathological processes, such as inflammation, damage to the blood-brain barrier and neuronal death. To better understand ECM dynamics in PD memory disturbances, we investigated the orchestrated expression of Mmps (Mmp-3, Mmp-7, and Mmp-9) and their modulators (Reck and Timp-3) in a rotenone-induced PD model. Also, we introduced an additional intervention in the memory process through rapid eye movement sleep deprivation (REMSD). We observed a REMSD-induced trend in reversing the memory impairment caused by rotenone administration. Associated to this phenotype, we observed a significant increase in Mmp-7/Reck and Mmp-9/Reck mRNA expression ratio in the substantia nigra and Mmp-9/Reck ratio in the hypothalamus. Moreover, the positive correlation of Mmp/Reck expression ratios between the substantia nigra and the striatum, observed upon rotenone infusion, was reversed by REMSD. Taken together, our results suggest a potential orchestrated association between an increase in Mmp-7 and Mmp-9/Reck expression ratios in the substantia nigra and a possible positive effect on cognitive performance in subjects affected by PD.


Parkinson’s disease Sleep deprivation Reck gene Mmp-9 Mmp-7 Extracellular matrix dynamics Recognition memory 



Dopamine receptor 1


Dopamine receptor 2


Extracellular matrix


Glial cell–derived neurotrophic factor


Matrix metalloproteinase




Nerve growth factor


Parkinson’s disease


reversion-inducing cysteine-rich protein with Kazal motifs


rapid eye movement


REM sleep deprivation


substantia nigra pars compacta



The authors are grateful for the competent technical support offered by Marluce Mantovani, Zizi de Mendonça, Débora Cristina da Costa Lopes, Alan Pereira dos Santos, and Michely Reis. In memoriam of Débora Cristina da Costa Lopes, whose dedication and kindness are deeply missed.

Author Contributions

AS was responsible for conception and design of the study, main experimental work, data analysis, and drafting of the manuscript. ADST was involved in the study design, main animal experimental work, data analysis, and drafting of the manuscript. LSR was involved in the experimental work and drafting of the manuscript. SMBW, MMSL, and MCS were involved in conception and design of the study, drafting, and revision of the manuscript. MTL was responsible for the study conception and design, supervision of the experimental work, data analysis, drafting, and revision of the manuscript.

Funding Information

This work was supported by FAPESP (São Paulo State Research Foundation) (grant numbers 2016/05311-2 to MCS; MTL was a recipient of FAPESP fellowships numbers 2016/18277-7 and 2015/26328-8), BNDES (Brazilian National Bank for Economic and Social Development) (grant number 09.2.1066.1 to MCS), CAPES (Coordination for the Improvement of Higher Education Personnel) (PVE program, grant number 88881.068070/2014-01 to MCS), CNPq (National Council for Scientific and Technological Development) (grant numbers 431279/2016-0 to MMSL, 307066/2012-6, 479356/2010-6 to SMBW and 401430/2013-8, 457601/2013-2, 409960/2013-6, 426896/2016-5, and 465656/2014-5 to MCS, MMSL is a recipient of CNPq Productivity Award number 305986/2016-3), FINEP (Brazilian Federal Funding Agency for Studies and Projects) (grant numbers 01.06.0664.00 and 01.08.0622.00 to MCS), Araucaria Foundation (grant number 219/2010-17497 to SMBW), and Ministries of Science and Technology (MCTI) and of Health (MS-DECIT).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1740_MOESM1_ESM.docx (287 kb)
Supplementary Figure 1 (DOCX 286 kb)
12035_2019_1740_MOESM2_ESM.docx (298 kb)
Supplementary Figure 2 (DOCX 297 kb)
12035_2019_1740_MOESM3_ESM.docx (294 kb)
Supplementary Figure 3 (DOCX 293 kb)
12035_2019_1740_MOESM4_ESM.docx (831 kb)
Supplementary Figure 4 (DOCX 830 kb)
12035_2019_1740_MOESM5_ESM.docx (14 kb)
Supplementary Table 1 (DOCX 13 kb)


  1. 1.
    Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905CrossRefGoogle Scholar
  2. 2.
    GBD 2015 Neurobiological Disorders Collaborator Group (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurobiology 16(11):877–897CrossRefGoogle Scholar
  3. 3.
    Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA et al (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157(11):1015–1022CrossRefGoogle Scholar
  4. 4.
    Parkinson J (2002) An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci 14(2):223–236 discussion 222 CrossRefGoogle Scholar
  5. 5.
    Claassen D (2011) Sleep disturbances in Parkinson’s disease patients and management options. Nat Sci Sleep 3:125–133CrossRefGoogle Scholar
  6. 6.
    Lima MMS, Martins EF, Delattre AM, Proenca MB, Mori MA, Carabelli B et al (2012) Motor and non-motor features of Parkinson’s disease - a review of clinical and experimental studies. CNS Neurol Disord Drug Targets 11(4):439–449CrossRefGoogle Scholar
  7. 7.
    Mercier F (2016) Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 73(24):4661–4674CrossRefGoogle Scholar
  8. 8.
    Dauth S, Grevesse T, Pantazopoulos H, Campbell PH, Maoz BM, Berretta S, Parker KK (2016) Extracellular matrix protein expression is brain region dependent. J Comp Neurol 524(7):1309–1336CrossRefGoogle Scholar
  9. 9.
    Dzwonek J, Rylski M, Kaczmarek L (2004) Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain. FEBS Letters 567(1):129–135CrossRefGoogle Scholar
  10. 10.
    Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2(7):502–511CrossRefGoogle Scholar
  11. 11.
    Itoh Y, Nagase H (2002) Matrix metalloproteinases in cancer. Essays Biochem 38:21–36CrossRefGoogle Scholar
  12. 12.
    Lorenzl S, Albers DS, Narr S, Chirichigno J, Beal MF (2002) Expression of MMP-2, MMP-9, and MMP-1 and their endogenous counterregulators TIMP-1 and TIMP-2 in postmortem brain tissue of Parkinson’s disease. Exp Neurol 178(1):13–20CrossRefGoogle Scholar
  13. 13.
    Nagy V (2006) Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J Neurosci 26(7):1923–1934CrossRefGoogle Scholar
  14. 14.
    Shapiro ML, Eichenbaum H (1999) Hippocampus as a memory map: synaptic plasticity and memory encoding by hippocampal neurons. Hippocampus. 9(4):365–384CrossRefGoogle Scholar
  15. 15.
    Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8(2):205–216CrossRefGoogle Scholar
  16. 16.
    Brown TE, Wilson AR, Cocking DL, Sorg BA (2009) Inhibition of matrix metalloproteinase activity disrupts reconsolidation but not consolidation of a fear memory. Neurobiol Learn Mem 91(1):66–72CrossRefGoogle Scholar
  17. 17.
    Meighan SE, Meighan PC, Choudhury P, Davis CJ, Olson ML, Zornes PA, Wright JW, Harding JW (2006) Effects of extracellular matrix-degrading proteases matrix metalloproteinases 3 and 9 on spatial learning and synaptic plasticity. J Neurochem 96(5):1227–1241CrossRefGoogle Scholar
  18. 18.
    Mizoguchi H, Ibi D, Takuma K, Toth E, Sato J, Itohara S, Nabeshima T, Yamada K (2010) Alterations of emotional and cognitive behaviors in matrix metallo-proteinase-2 and -9-deficient mice. The Open Behav Sci J 4: 19–25Google Scholar
  19. 19.
    Wright JW, Brown TE, Harding JW (2007) Inhibition of hippocampal matrix metalloproteinase-3 and -9 disrupts spatial memory. Neural Plast 2007(73813):1–8CrossRefGoogle Scholar
  20. 20.
    He X, Zhang L, Yao X, Hu J, Yu L, Jia H et al (2013) Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One 8(9):1–5CrossRefGoogle Scholar
  21. 21.
    Chen L, Tian S, Ke J (2014) Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats. Neurosci Lett 563:12–16CrossRefGoogle Scholar
  22. 22.
    Li S, Tian Y, Ding Y, Jin X, Yan C, Shen X (2009) The effects of rapid eye movement sleep deprivation and recovery on spatial reference memory of young rats. Learn Behav 37(3):246–253CrossRefGoogle Scholar
  23. 23.
    Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764CrossRefGoogle Scholar
  24. 24.
    Paxinos G, Watson C 2006. The rat brain in stereotaxic coordinates. Sixth Edition by. Acad Press;170:547612.Google Scholar
  25. 25.
    Cohen HB, Dement WC (1965) Sleep: changes in threshold to electroconvulsive shock in rats after deprivation of “paradoxical” phase. Science (80- 150(3701):1318–1319CrossRefGoogle Scholar
  26. 26.
    Dos Santos P, Targa ADS, Noseda ACD, Rodrigues LS, Fagotti J, Lima MMS (2017) Cholinergic oculomotor nucleus activity is induced by REM sleep deprivation negatively impacting on cognition. Mol Neurobiol 54(7):5721–5729CrossRefGoogle Scholar
  27. 27.
    Machado RB, Hipólide DC, Benedito-Silva AA, Tufik S (2004) Sleep deprivation induced by the modified multiple platform technique: quantification of sleep loss and recovery. Brain Res 1004(1–2):45–51CrossRefGoogle Scholar
  28. 28.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45Google Scholar
  29. 29.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034.1–research0034.11CrossRefGoogle Scholar
  30. 30.
    Targa ADS, Noseda ACD, Rodrigues LS, Aurich MF, Lima MMS (2018) REM sleep deprivation and dopaminergic D2 receptors modulation increase recognition memory in an animal model of Parkinson’s disease. Behav Brain Res 339:239–248CrossRefGoogle Scholar
  31. 31.
    Soto-Rodriguez S, Lopez-Armas G, Luquin S, Ramos-Zuñiga R, Jauregui-Huerta F, Gonzalez-Perez O, Gonzalez-Castañeda RE (2016) Rapid eye movement sleep deprivation produces long-term detrimental effects in spatial memory and modifies the cellular composition of the subgranular zone. Front Cell Neurosci 10:132CrossRefGoogle Scholar
  32. 32.
    Dos Santos ACD, Castro MAV, Jose EAK, Delattre AM, Dombrowski PA, Da Cunha C et al (2013) REM sleep deprivation generates cognitive and neurochemical disruptions in the intranigral rotenone model of Parkinson’s disease. J Neurosci Res 91(11):1508–1516CrossRefGoogle Scholar
  33. 33.
    Nagy V, Bozdagi O, Huntley GW (2007) The extracellular protease matrix metalloproteinase-9 is activated by inhibitory avoidance learning and required for long-term memory. Learn Mem 14(10):655–664CrossRefGoogle Scholar
  34. 34.
    Proença MB, Dombrowski PA, Da C, Fischer L, Ferraz AC, Lima MMS (2014) Neuropharmacology dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. NP 76:118–126Google Scholar
  35. 35.
    Ishikawa H, Yamada K, Pavlides C, Ichitani Y (2014) Neuroscience letters sleep deprivation impairs spontaneous object-place but not novel-object recognition in rats. Neurosci Lett 580:114–118CrossRefGoogle Scholar
  36. 36.
    Lima MMS, Andersen ML, Reksidler AB, Vital MABF, Tufik S (2007) The role of the substantia nigra pars compacta in regulating sleep patterns in rats. PLoS One 2(6):1–7CrossRefGoogle Scholar
  37. 37.
    Targa ADS, Noseda ACD, Rodrigues LS, Aurich MF, Lima MMS (2018) REM sleep deprivation and dopaminergic D2 receptors modulation increase recognition memory in an animal model of Parkinson’s disease. Behav Brain Res 339(November 2017):239–248CrossRefGoogle Scholar
  38. 38.
    Nunes GP, Tufik S, Nobrega JN (1994) Autoradiographic analysis of D1 and D2 dopaminergic receptors in rat brain after paradoxical sleep deprivation. Brain Res Bull 34(5):453–456CrossRefGoogle Scholar
  39. 39.
    Eckart C, Fuentemilla L, Bauch EM, Bunzeck N (2014) Dopaminergic stimulation facilitates working memory and differentially affects prefrontal low theta oscillations. Neuroimage 94:185–192CrossRefGoogle Scholar
  40. 40.
    Szklarczyk A, Lapinska J, Rylski M, Mckay RDG, Kaczmarek L (2002) Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. Neuroscience. 22(3):920–930CrossRefGoogle Scholar
  41. 41.
    He B, Peng H, Zhao Y, Zhou H, Zhao Z (2011) Modafinil treatment prevents REM sleep deprivation-induced brain function impairment by increasing MMP-9 expression. Brain Res 1426:38–42CrossRefGoogle Scholar
  42. 42.
    Cooper JM, Halter KA, Prosser RA (2018) Circadian rhythm and sleep-wake systems share the dynamic extracellular synaptic milieu. Neurobiol Sleep Circadian Rhythms 5:15–36CrossRefGoogle Scholar
  43. 43.
    Niijima F, Aito HS, Urai SM, Rai YA, Akagawasai ON, No KTAN et al (2010) Effects of atomoxetine on levels of monoamines and related substances in discrete brain regions in mice intermittently deprived of rapid eye movement sleep. Biol {&} Pharm Bull 33(4):617–621CrossRefGoogle Scholar
  44. 44.
    Geinisman Y, Berry RW, Disterhoft JF, Power JM, Van der Zee EA (2001) Associative learning elicits the formation of multiple-synapse boutons. J Neurosci 21(15):5568–5573CrossRefGoogle Scholar
  45. 45.
    Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 7(7):a021758CrossRefGoogle Scholar
  46. 46.
    Lazarov O, Hollands C (2016) Hippocampal neurogenesis: learning to remember. Prog Neurobio;l 138-140:1-18Google Scholar
  47. 47.
    Weintraub D, Doshi J, Koka D, Davatzikos C, Siderowf AD, Duda JE, Wolk DA, Moberg PJ et al (2011) Neurodegeneration across stages of cognitive decline in Parkinson’s disease. Arch Neurol 68(12):1562–1568CrossRefGoogle Scholar
  48. 48.
    Wright JW, Kramár EA, Meighan SE, Harding JW (2002) Extracellular matrix molecules, long-term potentiation, memory consolidation and the brain angiotensin system. Peptides. 23(1):221–246CrossRefGoogle Scholar
  49. 49.
    Kim E-M, Hwang O (2011) Role of matrix metalloproteinase-3 in neurodegeneration. J Neurochem 116(1):22–32CrossRefGoogle Scholar
  50. 50.
    Mizoguchi H, Nakade J, Tachibana M, Ibi D, Someya E, Koike H et al (2011; 7) Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J Neurosci 31(36):12963–12971CrossRefGoogle Scholar
  51. 51.
    Groch S, Wilhelm I, Diekelmann S, Born J (2013) The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials. Neurobiol Learn Mem 99:1–9CrossRefGoogle Scholar
  52. 52.
    Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62CrossRefGoogle Scholar
  53. 53.
    Monti JM, Monti D (2007) The involvement of dopamine in the modulation of sleep and waking. Sleep Med Rev 11(2):113–133CrossRefGoogle Scholar
  54. 54.
    Tsunematsu T, Tabuchi S, Tanaka KF, Boyden ES, Tominaga M, Yamanaka A (2013) Long-lasting silencing of orexin/hypocretin neurons using archaerhodopsin induces slow-wave sleep in mice. Behav Brain Res 255:64–74CrossRefGoogle Scholar
  55. 55.
    Schwartz MD, Kilduff TS (2015) The neurobiology of sleep and wakefulness. Psychiatr Clin North Am 38(4):61Google Scholar
  56. 56.
    Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science. 237(4819):1154–1162CrossRefGoogle Scholar
  57. 57.
    Indo Y (2018) NGF-dependent neurons and neurobiology of emotions and feelings: lessons from congenital insensitivity to pain with anhidrosis. Neurosci Biobehav Rev 39(3):375–391Google Scholar
  58. 58.
    Lorigados Pedre L, Pavón Fuentes N, Alvarez González L, McRae A, Serrano Sánchez T, Blanco Lescano L, Macı́as González R (2002) Nerve growth factor levels in parkinson disease and experimental parkinsonian rats. Brain Res 952(1):122–127CrossRefGoogle Scholar
  59. 59.
    Salinas M, Diaz R, Abraham NG, De Galarreta CMR, Cuadrado A (2003) Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem 278(16):13898–13904CrossRefGoogle Scholar
  60. 60.
    Pascual A, Hidalgo-Figueroa M, Gómez-Díaz R, López-Barneo J (2011) GDNF and protection of adult central catecholaminergic neurons. J Mol Endocrinol 46(3):R83–R92CrossRefGoogle Scholar
  61. 61.
    Annese V, Herrero MT, Di Pentima M, Gomez A, Lombardi L, Ros CM et al (2015) Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Brain Struct Funct 220(2):703–727CrossRefGoogle Scholar
  62. 62.
    Ibáñez CF, Andressoo JO (2017) Biology of GDNF and its receptors — relevance for disorders of the central nervous system. Neurobiology of Disease 97(Pt B):80–89CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Adauto Spindola
    • 1
  • Adriano D. S. Targa
    • 2
    • 3
  • Lais Soares Rodrigues
    • 2
    • 3
  • Sheila Maria Brochado Winnischofer
    • 4
    • 5
  • Marcelo M. S. Lima
    • 2
    • 3
  • Mari Cleide Sogayar
    • 1
    • 6
  • Marina Trombetta-Lima
    • 1
    Email author
  1. 1.Núcleo de Terapia Celular e Molecular (NUCEL), Faculdade de MedicinaUniversidade de São PauloSao PauloBrazil
  2. 2.Laboratório de Neurofisiologia, Departamento de FisiologiaUniversidade Federal do ParanáCuritibaBrazil
  3. 3.Departamento de FarmacologiaUniversidade Federal do ParanáCuritibaBrazil
  4. 4.Departamento de Bioquímica e Biologia MolecularUniversidade Federal do ParanáCuritibaBrazil
  5. 5.Departamento de Biologia Celular e MolecularUniversidade Federal do ParanáCuritibaBrazil
  6. 6.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSao PauloBrazil

Personalised recommendations