Selective Regulation of 5-HT1B Serotonin Receptor Expression in the Striatum by Dopamine Depletion and Repeated L-DOPA Treatment: Relationship to L-DOPA-Induced Dyskinesias

  • Fernando E. Padovan-Neto
  • Santanna Patterson
  • Nivea M. F. Voelkner
  • Feras Altwal
  • Joel A. Beverley
  • Anthony R. West
  • Heinz SteinerEmail author


Dopamine and serotonin in the basal ganglia interact in a bidirectional manner. On the one hand, serotonin (5-HT) receptors regulate the effects of dopamine agonists on several levels, ranging from molecular signaling to behavior. These interactions include 5-HT receptor-mediated facilitation of dopamine receptor-induced gene regulation in striatal output pathways, which involves the 5-HT1B receptor and others. Conversely, there is evidence that dopamine action by psychostimulants regulates 5-HT1B receptor expression in the striatum. To further investigate the effects of dopamine and agonists on 5-HT receptors, we assessed the expression of 5-HT1B and other serotonin receptor subtypes in the striatum after unilateral dopamine depletion by 6-OHDA and subsequent treatment with L-DOPA (5 mg/kg; 4 weeks). Neither dopamine depletion nor L-DOPA treatment produced significant changes in 5-HT2C, 5-HT4, or 5-HT6 receptor expression in the striatum. In contrast, the 6-OHDA lesion caused a (modest) increase in 5-HT1B mRNA levels throughout the striatum. Moreover, repeated L-DOPA treatment markedly further elevated 5-HT1B expression in the dopamine-depleted striatum, an effect that was most robust in the sensorimotor striatum. A minor L-DOPA-induced increase in 5-HT1B expression was also seen in the intact striatum. These changes in 5-HT1B expression mimicked changes in the expression of neuropeptide markers (dynorphin, enkephalin mRNA) in striatal projection neurons. After repeated L-DOPA treatment, the severity of L-DOPA-induced dyskinesias and turning behavior was positively correlated with the increase in 5-HT1B expression in the associative, but not sensorimotor, striatum ipsilateral to the lesion, suggesting that associative striatal 5-HT1B receptors may play a role in L-DOPA-induced behavioral abnormalities.


Dopamine Serotonin Gene expression L-DOPA Striatum Parkinson’s disease 


Funding Information

This work was supported in part by the National Institutes of Health Grants (DA011261 and DA046794 to H.S.; NS088554 to A.R.W.) and Rosalind Franklin University of Medicine and Science.


  1. 1.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152CrossRefPubMedGoogle Scholar
  2. 2.
    De Deurwaerdère P, Di Giovanni G (2017) Serotonergic modulation of the activity of mesencephalic dopaminergic systems: therapeutic implications. Prog Neurobiol 151:175–236CrossRefPubMedGoogle Scholar
  3. 3.
    Bhat RV, Baraban JM (1993) Activation of transcription factor genes in striatum by cocaine: role of both serotonin and dopamine systems. J Pharmacol Exp Ther 267:496–505PubMedGoogle Scholar
  4. 4.
    Lucas JJ, Segu L, Hen R (1997) 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-Fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935. Mol Pharmacol 51:755–763CrossRefPubMedGoogle Scholar
  5. 5.
    Szucs RP, Frankel PS, McMahon LR, Cunningham KA (2005) Relationship of cocaine-induced c-Fos expression to behaviors and the role of serotonin 5-HT2A receptors in cocaine-induced c-Fos expression. Behav Neurosci 119:1173–1183CrossRefPubMedGoogle Scholar
  6. 6.
    Horner KA, Adams DH, Hanson GR, Keefe KA (2005) Blockade of stimulant-induced preprodynorphin mRNA expression in the striatal matrix by serotonin depletion. Neuroscience 131:67–77CrossRefPubMedGoogle Scholar
  7. 7.
    Steiner H, Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123:60–76CrossRefPubMedGoogle Scholar
  8. 8.
    Young ST, Porrino LJ, Iadarola MJ (1991) Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci U S A 88:1291–1295CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cole AJ, Bhat RV, Patt C, Worley PF, Baraban JM (1992) D1 dopamine receptor activation of multiple transcription factor genes in rat striatum. J Neurochem 58:1420–1426CrossRefPubMedGoogle Scholar
  10. 10.
    Steiner H, Gerfen CR (1995) Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J Comp Neurol 353:200–212CrossRefPubMedGoogle Scholar
  11. 11.
    Castanon N, Scearce-Levie K, Lucas JJ, Rocha B, Hen R (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67:559–566CrossRefPubMedGoogle Scholar
  12. 12.
    Van Waes V, Ehrlich S, Beverley JA, Steiner H (2015) Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor. Neuropharmacology 89:77–86CrossRefPubMedGoogle Scholar
  13. 13.
    Van Waes V, Steiner H (2015) Fluoxetine and other SSRI antidepressants potentiate addiction-related gene regulation by psychostimulant medications. In: Pinna G (ed) Fluoxetine: pharmacology, mechanisms of action and potential side effects. Nova Science Publishers, Hauppauge, pp. 207–225Google Scholar
  14. 14.
    Alter D, Beverley JA, Patel R, Bolaños-Guzmán CA, Steiner H (2017) The 5-HT1B serotonin receptor regulates methylphenidate-induced gene expression in the striatum: differential effects on immediate-early genes. J Psychopharmacol 31:1078–1087CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Furay AR, McDevitt RA, Miczek KA, Neumaier JF (2011) 5-HT1B mRNA expression after chronic social stress. Behav Brain Res 224:350–357CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Murrough JW, Czermak C, Henry S, Nabulsi N, Gallezot JD, Gueorguieva R, Planeta-Wilson B, Krystal JH et al (2011) The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding. Arch Gen Psychiatry 68:892–900CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pentkowski NS, Cheung TH, Toy WA, Adams MD, Neumaier JF, Neisewander JL (2012) Protracted withdrawal from cocaine self-administration flips the switch on 5-HT(1B) receptor modulation of cocaine abuse-related behaviors. Biol Psychiatry 72:396–404CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heiman M, Heilbut A, Francardo V, Kulicke R, Fenster RJ, Kolaczyk ED, Mesirov JP, Surmeier DJ et al (2014) Molecular adaptations of striatal spiny projection neurons during levodopa-induced dyskinesia. Proc Natl Acad Sci U S A 111:4578–4583CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hoplight BJ, Vincow ES, Neumaier JF (2007) Cocaine increases 5-HT1B mRNA in rat nucleus accumbens shell neurons. Neuropharmacology 52:444–449CrossRefPubMedGoogle Scholar
  20. 20.
    Neumaier JF, McDevitt RA, Polis IY, Parsons LH (2009) Acquisition of and withdrawal from cocaine self-administration regulates 5-HT mRNA expression in rat striatum. J Neurochem 111:217–227CrossRefPubMedGoogle Scholar
  21. 21.
    Carta M, Tronci E (2014) Serotonin system implication in l-DOPA-induced dyskinesia: from animal models to clinical investigations. Front Neurol 5:78CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lanza K, Bishop C (2018) Serotonergic targets for the treatment of L-DOPA-induced dyskinesia. J Neural Transm 125:1203–1216CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang X, Andren PE, Greengard P, Svenningsson P (2008) Evidence for a role of the 5-HT1B receptor and its adaptor protein, p11, in L-DOPA treatment of an animal model of Parkinsonism. Proc Natl Acad Sci U S A 105:2163–2168CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Riahi G, Morissette M, Samadi P, Parent M, Di Paolo T (2013) Basal ganglia serotonin 1B receptors in parkinsonian monkeys with L-DOPA-induced dyskinesia. Biochem Pharmacol 86:970–978CrossRefPubMedGoogle Scholar
  25. 25.
    Morin N, Morissette M, Grégoire L, Rajput A, Rajput AH, Di Paolo T (2015) Contribution of brain serotonin subtype 1B receptors in levodopa-induced motor complications. Neuropharmacology 99:356–368CrossRefPubMedGoogle Scholar
  26. 26.
    Tseng KY, Caballero A, Dec A, Cass DK, Simak N, Sunu E, Park MJ, Blume SR et al (2011) Inhibition of striatal soluble guanylyl cyclase-cGMP signaling reverses basal ganglia dysfunction and akinesia in experimental parkinsonism. PLoS One 6:e27187CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, New YorkGoogle Scholar
  28. 28.
    Jayasinghe VR, Flores-Barrera E, West AR, Tseng KY (2017) Frequency-dependent corticostriatal disinhibition resulting from chronic dopamine depletion: role of local striatal cGMP and GABA-AR signaling. Cereb Cortex 27:625–634PubMedGoogle Scholar
  29. 29.
    Padovan-Neto FE, Cavalcanti-Kiwiatkoviski R, Carolino RO, Anselmo-Franci J, Del Bel E (2015) Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of L-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology 89:87–99CrossRefPubMedGoogle Scholar
  30. 30.
    Winkler C, Kirik D, Björklund A, Cenci MA (2002) L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiol Dis 10:165–186CrossRefPubMedGoogle Scholar
  31. 31.
    Cenci MA, Lee CS, Björklund A (1998) L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. Eur J Neurosci 10:2694–2708CrossRefPubMedGoogle Scholar
  32. 32.
    Padovan-Neto FE, Echeverry MB, Tumas V, Del-Bel EA (2009) Nitric oxide synthase inhibition attenuates L-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience 159:927–935CrossRefPubMedGoogle Scholar
  33. 33.
    Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132CrossRefGoogle Scholar
  34. 34.
    Steiner H, Kitai ST (2001) Unilateral striatal dopamine depletion: time-dependent effects on cortical function and behavioural correlates. Eur J Neurosci 14:1390–1404CrossRefPubMedGoogle Scholar
  35. 35.
    Willuhn I, Sun W, Steiner H (2003) Topography of cocaine-induced gene regulation in the rat striatum: relationship to cortical inputs and role of behavioural context. Eur J Neurosci 17:1053–1066CrossRefPubMedGoogle Scholar
  36. 36.
    Steiner H, Blum M, Kitai ST, Fedi P (1999) Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Exp Neurol 159:494–503CrossRefPubMedGoogle Scholar
  37. 37.
    Yano M, Steiner H (2005) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132:855–865CrossRefPubMedGoogle Scholar
  38. 38.
    Chang JW, Wachtel SR, Young D, Kang UJ (1999) Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson’s disease: studies on medial forebrain bundle and striatal lesions. Neuroscience 88:617–628CrossRefPubMedGoogle Scholar
  39. 39.
    Nisenbaum LK, Crowley WR, Kitai ST (1996) Partial striatal dopamine depletion differentially affects striatal substance P and enkephalin messenger RNA expression. Mol Brain Res 37:209–216CrossRefPubMedGoogle Scholar
  40. 40.
    Zigmond MJ, Abercrombie ED, Berger TW, Grace AA, Stricker EM (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. Trends Neurosci 13:290–296CrossRefPubMedGoogle Scholar
  41. 41.
    Henry B, Crossman AR, Brotchie JM (1999) Effect of repeated L-DOPA, bromocriptine, or lisuride administration on preproenkephalin-A and preproenkephalin-B mRNA levels in the striatum of the 6-hydroxydopamine-lesioned rat. Exp Neurol 155:204–220CrossRefPubMedGoogle Scholar
  42. 42.
    Pirker W, Tedroff J, Pontén H, Gunne L, Andrén PE, Hurd YL (2001) Coadministration of (-)-OSU6162 with l-DOPA normalizes preproenkephalin mRNA expression in the sensorimotor striatum of primates with unilateral 6-OHDA lesions. Exp Neurol 169:122–134CrossRefPubMedGoogle Scholar
  43. 43.
    Calon F, Birdi S, Rajput AH, Hornykiewicz O, Bédard PJ, Di Paolo T (2002) Increase of preproenkephalin mRNA levels in the putamen of Parkinson disease patients with levodopa-induced dyskinesias. J Neuropathol Exp Neurol 61:186–196CrossRefPubMedGoogle Scholar
  44. 44.
    Pavón N, Martín AB, Mendialdua A, Moratalla R (2006) ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biol Psychiatry 59:64–74CrossRefPubMedGoogle Scholar
  45. 45.
    Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66:603–613CrossRefPubMedGoogle Scholar
  46. 46.
    Ruiz-DeDiego I, Mellstrom B, Vallejo M, Naranjo JR, Moratalla R (2015) Activation of DREAM (downstream regulatory element antagonistic modulator), a calcium-binding protein, reduces L-DOPA-induced dyskinesias in mice. Biol Psychiatry 77:95–105CrossRefPubMedGoogle Scholar
  47. 47.
    Sgroi S, Capper-Loup C, Paganetti P, Kaelin-Lang A (2016) Enkephalin and dynorphin neuropeptides are differently correlated with locomotor hypersensitivity and levodopa-induced dyskinesia in parkinsonian rats. Exp Neurol 280:80–88CrossRefPubMedGoogle Scholar
  48. 48.
    Konradi C, Westin JE, Carta M, Eaton ME, Kuter K, Dekundy A, Lundblad M, Cenci MA (2004) Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 17:219–236CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Cenci MA, Konradi C (2010) Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. Prog Brain Res 183:209–233CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Muller CP, Huston JP (2006) Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine. Trends Pharmacol Sci 27:105–112CrossRefPubMedGoogle Scholar
  51. 51.
    Cunningham KA, Anastasio NC (2014) Serotonin at the nexus of impulsivity and cue reactivity in cocaine addiction. Neuropharmacology 76:460–478CrossRefPubMedGoogle Scholar
  52. 52.
    Andersson M, Hilbertson A, Cenci MA (1999) Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiol Dis 6:461–474CrossRefPubMedGoogle Scholar
  53. 53.
    Solis O, Garcia-Montes JR, González-Granillo A, Xu M, Moratalla R (2017) Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb Cortex 27:435–446Google Scholar
  54. 54.
    Gerfen CR, Miyachi S, Paletzki R, Brown P (2002) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 22:5042–5054CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gerfen CR (2010) D1 dopamine receptor supersensitivity in the dopamine-depleted striatum: Aberrant ERK1/2 signaling. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function. Academic Press/Elsevier, London, pp. 491–500CrossRefGoogle Scholar
  56. 56.
    Steiner H (2017) Psychostimulant-induced gene regulation in striatal circuits. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Academic Press/Elsevier, London, pp. 639–672Google Scholar
  57. 57.
    Cenci MA, Björklund A (1993) Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. Eur J Neurosci 5:1062–1070CrossRefPubMedGoogle Scholar
  58. 58.
    Wang JQ, Daunais JB, McGinty JF (1994) NMDA receptors mediate amphetamine-induced upregulation of zif/268 and preprodynorphin mRNA expression in rat striatum. Synapse 18:343–353CrossRefPubMedGoogle Scholar
  59. 59.
    Vargo JM, Marshall JF (1995) Time-dependent changes in dopamine agonist-induced striatal Fos immunoreactivity are related to sensory neglect and its recovery after unilateral prefrontal cortex injury. Synapse 20:305–315CrossRefPubMedGoogle Scholar
  60. 60.
    Steiner H, Kitai ST (2000) Regulation of rat cortex function by D1 dopamine receptors in the striatum. J Neurosci 20:5449–5460CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Alam M, Rumpel R, Jin X, von Wrangel C, Tschirner SK, Krauss JK, Grothe C, Ratzka A et al (2017) Altered somatosensory cortex neuronal activity in a rat model of Parkinson’s disease and levodopa-induced dyskinesias. Exp Neurol 294:19–31CrossRefPubMedGoogle Scholar
  62. 62.
    Murer MG, Moratalla R (2011) Striatal signaling in L-DOPA-induced dyskinesia: common mechanisms with drug abuse and long term memory involving D1 dopamine receptor stimulation. Front Neuroanat 5:51CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Alcacer C, Andreoli L, Sebastianutto I, Jakobsson J, Fieblinger T, Cenci MA (2017) Chemogenetic stimulation of striatal projection neurons modulates responses to Parkinson’s disease therapy. J Clin Invest 127:720–734CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    F Hernández L, Castela I, Ruiz-DeDiego I, Obeso JA, Moratalla R (2017) Striatal activation by optogenetics induces dyskinesias in the 6-hydroxydopamine rat model of Parkinson disease. Mov Disord 32:530–537CrossRefPubMedGoogle Scholar
  65. 65.
    Girasole AE, Lum MY, Nathaniel D, Bair-Marshall CJ, Guenthner CJ, Luo L, Kreitzer AC, Nelson AB (2018) A subpopulation of striatal neurons mediates levodopa-induced dyskinesia. Neuron 97:787–795CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ryan MB, Bair-Marshall C, Nelson AB (2018) Aberrant striatal activity in parkinsonism and levodopa-induced dyskinesia. Cell Rep 23:3438–3446CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Keifman E, Ruiz-DeDiego I, Pafundo DE, Paz RM, Solís O, Murer MG, Moratalla R (2019) Optostimulation of striatonigral terminals in substantia nigra induces dyskinesia that increases after L-DOPA in a mouse model of Parkinson’s disease. Br J Pharmacol 176:2146–2161PubMedGoogle Scholar
  68. 68.
    Groenewegen HJ, Wouterlood FG, Uylings HBM (2017) Organization of prefrontal-striatal connections. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Academic Press/Elsevier, London, pp. 423–438Google Scholar
  69. 69.
    Haber SN (2017) Integrative networks across basal ganglia circuits. In: Steiner H, Tseng KY (eds) Handbook of basal ganglia structure and function, 2nd edn. Academic Press/Elsevier, London, pp. 535–552Google Scholar
  70. 70.
    Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381CrossRefPubMedGoogle Scholar
  71. 71.
    Joel D, Weiner I (1994) The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379CrossRefPubMedGoogle Scholar
  72. 72.
    Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Carta M, Carlsson T, Kirik D, Björklund A (2007) Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain 130:1819–1833CrossRefPubMedGoogle Scholar
  74. 74.
    Cenci MA (2014) Presynaptic mechanisms of l-DOPA-induced dyskinesia: the findings, the debate, and the therapeutic implications. Front Neurol 5:242CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bezard E, Tronci E, Pioli EY, Li Q, Porras G, Björklund A, Carta M (2013) Study of the antidyskinetic effect of eltoprazine in animal models of levodopa-induced dyskinesia. Mov Disord 28:1088–1096CrossRefPubMedGoogle Scholar
  76. 76.
    Svenningsson P, Rosenblad C, Af Edholm Arvidsson K, Wictorin K, Keywood C, Shankar B, Lowe DA, Björklund A et al (2015) Eltoprazine counteracts l-DOPA-induced dyskinesias in Parkinson’s disease: a dose-finding study. Brain 138:963–973CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Meadows SM, Chambers NE, Conti MM, Bossert SC, Tasber C, Sheena E, Varney M, Newman-Tancredi A et al (2017) Characterizing the differential roles of striatal 5-HT1A auto- and hetero-receptors in the reduction of l-DOPA-induced dyskinesia. Exp Neurol 292:168–178CrossRefPubMedGoogle Scholar
  78. 78.
    Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58:167–182CrossRefPubMedGoogle Scholar
  79. 79.
    Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Vergé D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88:899–915CrossRefPubMedGoogle Scholar
  80. 80.
    Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16:7566–7573CrossRefPubMedGoogle Scholar
  81. 81.
    Ding S, Li L, Zhou FM (2015) Robust presynaptic serotonin 5-HT(1B) receptor inhibition of the striatonigral output and its sensitization by chronic fluoxetine treatment. J Neurophysiol 113:3397–3409CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neuroscience, The Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA
  2. 2.Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, 14040-901Brazil
  3. 3.Department of Cellular and Molecular Pharmacology, The Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA
  4. 4.School of Graduate and Postdoctoral StudiesRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA

Personalised recommendations