Reboxetine Treatment Reduces Neuroinflammation and Neurodegeneration in the 5xFAD Mouse Model of Alzheimer’s Disease: Role of CCL2

  • Irene L. Gutiérrez
  • Marta González-Prieto
  • Javier R. Caso
  • Borja García-Bueno
  • Juan C. Leza
  • José L. M. MadrigalEmail author


The reduction of brain noradrenaline levels is associated to the initiation of Alzheimer’s disease and contributes to its progression. This seems to be due mainly to the anti-neuroinflammatory actions of noradrenaline. The analysis of noradrenaline effects on brain cells demonstrates that it also regulates the production of the chemokine CCL2. In the present study, we analyzed the effect of the selective noradrenaline reuptake inhibitor, reboxetine, on the inflammatory and neurodegenerative alterations present in 5xFAD mice, and how the genetic removal of CCL2 affects reboxetine actions. We observed that the removal of CCL2 reduced the memory impairments in 5xFAD mice as well as the neuroinflammatory response, the accumulation of amyloid beta plaques, and the degeneration of neurons in the brain cortex. The administration of reboxetine with osmotic pumps for 28 days also resulted in anti-inflammatory and neuroprotective changes in 5xFAD mice, even in the absence of CCL2. Yet, 6-month-old CCL2KO mice presented a significant degree of neuroinflammation and neuronal damage. These findings indicate that reboxetine treatment prevents the brain alterations caused by prolonged overproduction of amyloid beta, being these effects independent of CCL2, which is a mediator of the damage caused by amyloid beta in the brain cortex, but necessary for the prevention of the development of neurodegeneration in normal healthy conditions.


Noradrenaline Reboxetine CCL2 MCP-1 5xFAD Neuroinflammation 


Funding Information

This work was supported by the UCM (PR26/16-20278), the Spanish Ministry of Science (SAF2017-86620-R), and Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM). ILG was supported by a Fellowship from the Spanish Ministry of Science. MGP was supported by a Fellowship from the European Youth Employment Initiative (YEI). BGB and JRC are Ramón y Cajal fellows (Spanish Ministry of Science).

Compliance with Ethical Standards

All experimental protocols adhered to the guidelines of the Animal Welfare Committee of the Universidad Complutense of Madrid, Spain (PROEX 052/17), and according to European Union laws (2010/63/EU).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q (2015) Noradrenergic dysfunction in Alzheimer’s disease. Front Neurosci 9:220CrossRefGoogle Scholar
  2. 2.
    Heneka MT, Ramanathan M, Jacobs AH, Dumitrescu-Ozimek L, Bilkei-Gorzo A, Debeir T, Sastre M, Galldiks N et al (2006) Locus ceruleus degeneration promotes Alzheimer pathogenesis in amyloid precursor protein 23 transgenic mice. J Neurosci 26(5):1343–1354CrossRefGoogle Scholar
  3. 3.
    Hammerschmidt T, Kummer MP, Terwel D, Martinez A, Gorji A, Pape HC, Rommelfanger KS, Schroeder JP et al (2013) Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol Psychiatry 73(5):454–463CrossRefGoogle Scholar
  4. 4.
    Kalinin S, Polak PE, Lin SX, Sakharkar AJ, Pandey SC, Feinstein DL (2012) The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer’s disease. Neurobiol Aging 33(8):1651–1663CrossRefGoogle Scholar
  5. 5.
    Dello RC, Boullerne AI, Gavrilyuk V, Feinstein DL (2004) Inhibition of microglial inflammatory responses by norepinephrine: effects on nitric oxide and interleukin-1beta production. J Neuroinflammation 1(1):9CrossRefGoogle Scholar
  6. 6.
    Braun D, Madrigal JL, Feinstein DL (2014) Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Curr Neuropharmacol 12(4):342–352CrossRefGoogle Scholar
  7. 7.
    Madrigal JL, Leza JC, Polak P, Kalinin S, Feinstein DL (2009) Astrocyte-derived MCP-1 mediates neuroprotective effects of noradrenaline. J Neurosci 29(1):263–267CrossRefGoogle Scholar
  8. 8.
    Madrigal JL, Garcia-Bueno B, Hinojosa AE, Polak P, Feinstein DL, Leza JC (2010) Regulation of MCP-1 production in brain by stress and noradrenaline-modulating drugs. J Neurochem 113(2):543–551CrossRefGoogle Scholar
  9. 9.
    Yadav A, Saini V, Arora S (2010) MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411(21–22):1570–1579CrossRefGoogle Scholar
  10. 10.
    Semple BD, Kossmann T, Morganti-Kossmann MC (2010) Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab 30(3):459–473CrossRefGoogle Scholar
  11. 11.
    Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interf Cytokine Res 29(6):313–326CrossRefGoogle Scholar
  12. 12.
    Eugenin EA, D’Aversa TG, Lopez L, Calderon TM, Berman JW (2003) MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis. J Neurochem 85(5):1299–1311CrossRefGoogle Scholar
  13. 13.
    Godefroy D, Gosselin RD, Yasutake A, Fujimura M, Combadiere C, Maury-Brachet R, Laclau M, Rakwal R et al (2012) The chemokine CCL2 protects against methylmercury neurotoxicity. Toxicol Sci 125(1):209–218CrossRefGoogle Scholar
  14. 14.
    Zisman DA, Kunkel SL, Strieter RM, Tsai WC, Bucknell K, Wilkowski J, Standiford TJ (1997) MCP-1 protects mice in lethal endotoxemia. J Clin Invest 99(12):2832–2836CrossRefGoogle Scholar
  15. 15.
    Hinojosa AE, Caso JR, Garcia-Bueno B, Leza JC, Madrigal JL (2013) Dual effects of noradrenaline on astroglial production of chemokines and pro-inflammatory mediators. J Neuroinflammation 10:81CrossRefGoogle Scholar
  16. 16.
    Gutierrez IL, Gonzalez-Prieto M, Garcia-Bueno B, Caso JR, Leza JC, Madrigal JLM (2018) Alternative method to detect neuronal degeneration and amyloid beta accumulation in free-floating brain sections with Fluoro-Jade. ASN Neuro 10:1759091418784357CrossRefGoogle Scholar
  17. 17.
    Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M et al (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140CrossRefGoogle Scholar
  18. 18.
    Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924CrossRefGoogle Scholar
  19. 19.
    Chun H, Lee CJ (2018) Reactive astrocytes in Alzheimer’s disease: a double-edged sword. Neurosci Res 126:44–52CrossRefGoogle Scholar
  20. 20.
    Woodling NS, Colas D, Wang Q, Minhas P, Panchal M, Liang X, Mhatre SD, Brown H et al (2016) Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 139(Pt 7):2063–2081CrossRefGoogle Scholar
  21. 21.
    Kalinin S, Gavrilyuk V, Polak PE, Vasser R, Zhao J, Heneka MT, Feinstein DL (2007) Noradrenaline deficiency in brain increases beta-amyloid plaque burden in an animal model of Alzheimer’s disease. Neurobiol Aging 28(8):1206–1214CrossRefGoogle Scholar
  22. 22.
    Naert G, Rivest S (2013) A deficiency in CCR2+ monocytes: the hidden side of Alzheimer’s disease. J Mol Cell Biol 5(5):284–293CrossRefGoogle Scholar
  23. 23.
    Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, Bahr M, Schmidt M et al (2005) Globular amyloid beta-peptide oligomer - a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem 95(3):834–847CrossRefGoogle Scholar
  24. 24.
    Craft JM, Watterson DM, Van Eldik LJ (2006) Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia 53(5):484–490CrossRefGoogle Scholar
  25. 25.
    Fowler JH, McCracken E, Dewar D, McCulloch J (2003) Intracerebral injection of AMPA causes axonal damage in vivo. Brain Res 991(1–2):104–112CrossRefGoogle Scholar
  26. 26.
    Gilgun-Sherki Y, Panet H, Holdengreber V, Mosberg-Galili R, Offen D (2003) Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 47(2):201–207CrossRefGoogle Scholar
  27. 27.
    Kalinin S, Polak PE, Madrigal JL, Gavrilyuk V, Sharp A, Chauhan N, Marien M, Colpaert F et al (2006) Beta-amyloid-dependent expression of NOS2 in neurons: prevention by an alpha2-adrenergic antagonist. Antioxid Redox Signal 8(5–6):873–883CrossRefGoogle Scholar
  28. 28.
    Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J et al (2010) Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci U S A 107(13):6058–6063CrossRefGoogle Scholar
  29. 29.
    Braun D, Feinstein DL (2019) The locus coeruleus neuroprotective drug vindeburnol normalizes behavior in the 5xFAD transgenic mouse model ofAlzheimer's disease. Brain Res 1702:29–37Google Scholar
  30. 30.
    Chalermpalanupap T, Kinkead B, Hu WT, Kummer MP, Hammerschmidt T, Heneka MT, Weinshenker D, Levey AI (2013) Targeting norepinephrine in mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther 5(2):21CrossRefGoogle Scholar
  31. 31.
    Koppel J, Jimenez H, Adrien L, Chang H, Malhotra AK, Davies P (2019) Increased tau phosphorylation follows impeded dopamine clearance in a P301L and novel P301L/COMT-deleted (DM) tau mouse model. J Neurochem 148(1):127–135CrossRefGoogle Scholar
  32. 32.
    Kiyota T, Yamamoto M, Xiong H, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T (2009) CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS One 4(7):e6197CrossRefGoogle Scholar
  33. 33.
    Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T (2005) Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am J Pathol 166(5):1475–1485CrossRefGoogle Scholar
  34. 34.
    Kiyota T, Gendelman HE, Weir RA, Higgins EE, Zhang G, Jain M (2013) CCL2 affects beta-amyloidosis and progressive neurocognitive dysfunction in a mouse model of Alzheimer’s disease. Neurobiol Aging 34(4):1060–1068CrossRefGoogle Scholar
  35. 35.
    Kiyota T, Morrison CM, Tu G, Dyavarshetty B, Weir RA, Zhang G, Xiong H, Gendelman HE (2015) Presenilin-1 familial Alzheimer’s disease mutation alters hippocampal neurogenesis and memory function in CCL2 null mice. Brain Behav Immun 49:311–321CrossRefGoogle Scholar
  36. 36.
    Howe CL, LaFrance-Corey RG, Goddery EN, Johnson RK, Mirchia K (2017) Neuronal CCL2 expression drives inflammatory monocyte infiltration into the brain during acute virus infection. J Neuroinflammation 14(1):238CrossRefGoogle Scholar
  37. 37.
    Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C (2002) Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 22(3):308–317CrossRefGoogle Scholar
  38. 38.
    Janssen K, Rickert M, Clarner T, Beyer C, Kipp M (2016) Absence of CCL2 and CCL3 ameliorates central nervous system grey matter but not white matter demyelination in the presence of an intact blood-brain barrier. Mol Neurobiol 53(3):1551–1564CrossRefGoogle Scholar
  39. 39.
    Rankine EL, Hughes PM, Botham MS, Perry VH, Felton LM (2006) Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leucocyte recruitment. Eur J Neurosci 24(1):77–86CrossRefGoogle Scholar
  40. 40.
    Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC (2010) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 30(4):769–782CrossRefGoogle Scholar
  41. 41.
    Schlachetzki JC, Fiebich BL, Haake E, de Oliveira AC, Candelario-Jalil E, Heneka MT, Hull M (2010) Norepinephrine enhances the LPS-induced expression of COX-2 and secretion of PGE2 in primary rat microglia. J Neuroinflammation 7:2CrossRefGoogle Scholar
  42. 42.
    Sokolova A, Hill MD, Rahimi F, Warden LA, Halliday GM, Shepherd CE (2009) Monocyte chemoattractant protein-1 plays a dominant role in the chronic inflammation observed in Alzheimer’s disease. Brain Pathol 19(3):392–398CrossRefGoogle Scholar
  43. 43.
    Westin K, Buchhave P, Nielsen H, Minthon L, Janciauskiene S, Hansson O (2012) CCL2 is associated with a faster rate of cognitive decline during early stages of Alzheimer’s disease. PLoS One 7(1):e30525CrossRefGoogle Scholar
  44. 44.
    Severini C, Passeri PP, Ciotti M, Florenzano F, Possenti R, Zona C, Di MA, Guglielmotti A et al (2014) Bindarit, inhibitor of CCL2 synthesis, protects neurons against amyloid-beta-induced toxicity. J Alzheimers Dis 38(2):281–293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Toxicology, School of MedicineUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)Instituto de Investigación Neuroquímica (IUINQ-UCM) and Instituto de Investigación Sanitaria Hospital 12 de Octubre (Imas12)MadridSpain

Personalised recommendations