Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8589–8602 | Cite as

Deletion of Arginase 2 Ameliorates Retinal Neurodegeneration in a Mouse Model of Multiple Sclerosis

  • Chithra D. Palani
  • Abdelrahman Y. Fouda
  • Fang Liu
  • Zhimin Xu
  • Eslam Mohamed
  • Shailedra Giri
  • Sylvia B. Smith
  • Ruth B. Caldwell
  • S. Priya NarayananEmail author
Article

Abstract

Optic neuritis is a major clinical feature of multiple sclerosis (MS) and can lead to temporary or permanent vision loss. Previous studies from our laboratory have demonstrated the critical involvement of arginase 2 (A2) in retinal neurodegeneration in models of ischemic retinopathy. The current study was undertaken to investigate the role of A2 in MS-mediated retinal neuronal damage and degeneration. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2−/−) mice. EAE-induced motor deficits, loss of retinal ganglion cells, retinal thinning, inflammatory signaling, and glial activation were studied in EAE-treated WT and A2−/− mice and their respective controls. Increased expression of A2 was observed in WT retinas in response to EAE induction. EAE-induced motor deficits were markedly reduced in A2−/− mice compared with WT controls. Retinal flat mount studies demonstrated a significant reduction in the number of RGCs in WT EAE retinas in comparison with normal control mice. A significant improvement in neuronal survival was evident in retinas of EAE-induced A2−/− mice compared with WT. RNA levels of the proinflammatory molecules CCL2, COX2, IL-1α, and IL-12α were significantly reduced in the A2−/− EAE retinas compared with WT EAE. EAE-induced activation of glia (microglia and Müller cells) was markedly reduced in A2−/− retinas compared with WT. Western blot analyses showed increased levels of phospho-ERK1/2 and reduced levels of phospho-BAD in the WT EAE retina, while these changes were prevented in A2−/− mice. In conclusion, our studies establish EAE as an excellent model to study MS-mediated retinal neuronal damage and suggest the potential value of targeting A2 as a therapy to prevent MS-mediated retinal neuronal injury.

Keywords

Arginase 2 Retina Optic neuritis Neurodegeneration EAE Retinal ganglion cells 

Abbreviations

A2

Arginase 2

A2−/−

A2 knockout

GCC

Ganglion cell complex

EAE

Experimental autoimmune encephalomyelitis

GCL

Ganglion cell layer

IPL

Inner plexiform layer

INL

Inner nuclear layer

MS

Multiple sclerosis

OPL

Outer plexiform layer

ONL

Outer nuclear layer

OCT

Optical coherence tomography

PFA

Paraformaldehyde

RGCs

Retinal ganglion cells

RNFL

Retinal nerve fiber layer

WT

Wild type

Notes

Author Contributions

CDP implemented the experiments, analyzed the data, prepared the figures, and edited the manuscript. AYF helped with experimental design, analyzed the data, prepared figures, and wrote the manuscript. FL performed experiments, analyzed the data, and prepared the figures. ZX induced the in vivo experimental model and helped with analyzing the data. EM helped with induction of the model and clinical scoring. SG helped with experimental design and establishing the animal model in our laboratory. SBS provided assistance with SD-OCT experiment and edited the manuscript. RBC contributed to experimental design and revised the manuscript. SPN conceived, designed and coordinated the experiments, and finalized the manuscript.

Funding

This study was supported in part by the National Multiple Sclerosis Society (PP-1606-08778 to S.P.N.), National Eye Institute (R01EY028569 to S.P.N.), and Augusta University Culver Vision Discovery Institute.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2019_1691_MOESM1_ESM.pdf (147 kb)
Figure S1 (PDF 147 kb)

References

  1. 1.
    Balcer LJ, Miller DH, Reingold SC, Cohen JA (2015) Vision and vision-related outcome measures in multiple sclerosis. Brain. 138:11–27CrossRefPubMedGoogle Scholar
  2. 2.
    Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ (2011) Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol 31:362–373CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Galetta SL, Villoslada P, Levin N, Shindler K, Ishikawa H, Parr E, Cadavid D, Balcer LJ (2015) Acute optic neuritis: unmet clinical needs and model for new therapies. Neurol Neuroimmunol Neuroinflamm 2:e135CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sakai T, Ishihara T, Higaki M, Akiyama G, Tsuneoka H (2011) Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 52:1516–1521CrossRefPubMedGoogle Scholar
  5. 5.
    Walter SD, Ishikawa H, Galetta KM, Sakai RE, Feller DJ, Henderson SB, Wilson JA, Maguire MG et al (2012) Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology. 119:1250–1257CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abel LA, Bowman EA, Velakoulis D, Fahey MC, Desmond P, Macfarlane MD, Looi JCL, Adamson CL et al (2012) Saccadic eye movement characteristics in adult niemann-pick type c disease: relationships with disease severity and brain structural measures. PLoS One 7:e50947CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. Ii. Mri analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. Ubc ms/mri study group and the ifnb multiple sclerosis study group. Neurology. 43:662–667CrossRefPubMedGoogle Scholar
  8. 8.
    Polman CH, O’Connor PW, Havrdova E, Hutchinson M, Kappos L, Miller DH, Phillips JT, Lublin FD et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910CrossRefPubMedGoogle Scholar
  9. 9.
    Thomas K, Proschmann U, Ziemssen T (2017) Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother 18:1649–1660CrossRefPubMedGoogle Scholar
  10. 10.
    Thomas RH, Wakefield RA (2015) Oral disease-modifying therapies for relapsing-remitting multiple sclerosis. Am J Health Syst Pharm 72:25–38CrossRefPubMedGoogle Scholar
  11. 11.
    Robinson AP, Harp CT, Noronha A, Miller SD (2014) The experimental autoimmune encephalomyelitis (eae) model of ms: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (eae) as a model for multiple sclerosis (ms). Br J Pharmacol 164:1079–1106CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nath N, Khan M, Paintlia MK, Singh I, Hoda MN, Giri S (2009) Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J Immunol 182:8005–8014CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Talla V, Yu H, Chou TH, Porciatti V, Chiodo V, Boye SL, Hauswirth WW, Lewin AS et al (2013) Nadh-dehydrogenase type-2 suppresses irreversible visual loss and neurodegeneration in the eae animal model of ms. Mol Ther 21:1876–1888CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brambilla R, Dvoriantchikova G, Barakat D, Ivanov D, Bethea JR, Shestopalov VI (2012) Transgenic inhibition of astroglial nf-kappab protects from optic nerve damage and retinal ganglion cell loss in experimental optic neuritis. J Neuroinflammation 9:213CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dal Monte M, Cammalleri M, Locri F, Amato R, Marsili S, Rusciano D, Bagnoli P (2018) Fatty acids dietary supplements exert anti-inflammatory action and limit ganglion cell degeneration in the retina of the eae mouse model of multiple sclerosis. Nutrients. 10Google Scholar
  17. 17.
    Nishioka C, Liang HF, Barsamian B, Sun SW (2019) Sequential phases of rgc axonal and somatic injury in eae mice examined using dti and oct. Mult Scler Relat Disord 27:315–323CrossRefPubMedGoogle Scholar
  18. 18.
    Wilmes AT, Reinehr S, Kuhn S, Pedreiturria X, Petrikowski L, Faissner S et al (2018) Laquinimod protects the optic nerve and retina in an experimental autoimmune encephalomyelitis model. J Neuroinflammation 15:183CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Larabee CM, Desai S, Agasing A, Georgescu C, Wren JD, Axtell RC et al (2016) Loss of nrf2 exacerbates the visual deficits and optic neuritis elicited by experimental autoimmune encephalomyelitis. Mol Vis 22:1503–1513PubMedPubMedCentralGoogle Scholar
  20. 20.
    Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB (2018) Arginase: a multifaceted enzyme important in health and disease. Physiol Rev 98:641–665CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Narayanan SP, Suwanpradid J, Saul A, Xu Z, Still A, Caldwell RW, Caldwell RB (2011) Arginase 2 deletion reduces neuro-glial injury and improves retinal function in a model of retinopathy of prematurity. PLoS One 6:e22460CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Shosha E, Xu Z, Yokota H, Saul A, Rojas M, Caldwell RW, Caldwell RB, Narayanan SP (2016) Arginase 2 promotes neurovascular degeneration during ischemia/reperfusion injury. Cell Death Dis 7:e2483CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xu Z, Fouda AY, Lemtalsi T, Shosha E, Rojas M, Liu F et al (2018) Retinal neuroprotection from optic nerve trauma by deletion of arginase 2. Front Neurosci 12:970CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Poisson LM, Suhail H, Singh J, Datta I, Denic A, Labuzek K, Hoda MN, Shankar A et al (2015) Untargeted plasma metabolomics identifies endogenous metabolite with drug-like properties in chronic animal model of multiple sclerosis. J Biol Chem 290:30697–30712CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Fouda AY, Xu Z, Shosha E, Lemtalsi T, Chen J, Toque HA, Tritz R, Cui X et al (2018) Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses. Cell Death Dis 9:1001CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rodriguez AR, de Sevilla Muller LP, Brecha NC (2014) The rna binding protein rbpms is a selective marker of ganglion cells in the mammalian retina. J Comp Neurol 522:1411–1443CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Nadal-Nicolas FM, Jimenez-Lopez M, Sobrado-Calvo P, Nieto-Lopez L, Canovas-Martinez I, Salinas-Navarro M et al (2009) Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci 50:3860–3868CrossRefPubMedGoogle Scholar
  28. 28.
    Liu Q, Li H, Yang J, Niu X, Zhao C, Zhao L, Wang Z (2017) Valproic acid attenuates inflammation of optic nerve and apoptosis of retinal ganglion cells in a rat model of optic neuritis. Biomed Pharmacother 96:1363–1370CrossRefPubMedGoogle Scholar
  29. 29.
    Smith AW, Rohrer B, Wheless L, Samantaray S, Ray SK, Inoue J, Azuma M, Banik NL (2016) Calpain inhibition reduces structural and functional impairment of retinal ganglion cells in experimental optic neuritis. J Neurochem 139:270–284CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Azuchi Y, Kimura A, Guo X, Akiyama G, Noro T, Harada C, Nishigaki A, Namekata K et al (2017) Valproic acid and ask1 deficiency ameliorate optic neuritis and neurodegeneration in an animal model of multiple sclerosis. Neurosci Lett 639:82–87CrossRefPubMedGoogle Scholar
  31. 31.
    Gudi V, Gai L, Herder V, Tejedor LS, Kipp M, Amor S, Sühs KW, Hansmann F et al (2017) Synaptophysin is a reliable marker for axonal damage. J Neuropathol Exp Neurol 76:109–125CrossRefGoogle Scholar
  32. 32.
    Horstmann L, Schmid H, Heinen AP, Kurschus FC, Dick HB, Joachim SC (2013) Inflammatory demyelination induces glia alterations and ganglion cell loss in the retina of an experimental autoimmune encephalomyelitis model. J Neuroinflammation 10:120CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Niwa M, Aoki H, Hirata A, Tomita H, Green PG, Hara A (2016) Retinal cell degeneration in animal models. Int J Mol Sci 17Google Scholar
  34. 34.
    Choudry M, Tang X, Santorian T, Wasnik S, Xiao J, Xing W, Lau KHW, Mohan S et al (2018) Deficient arginase ii expression without alteration in arginase i expression attenuated experimental autoimmune encephalomyelitis in mice. Immunology. 155:85–98CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Guan Y, Shindler KS, Tabuena P, Rostami AM (2006) Retinal ganglion cell damage induced by spontaneous autoimmune optic neuritis in mog-specific tcr transgenic mice. J Neuroimmunol 178:40–48CrossRefPubMedGoogle Scholar
  36. 36.
    Quinn TA, Dutt M, Shindler KS (2011) Optic neuritis and retinal ganglion cell loss in a chronic murine model of multiple sclerosis. Front Neurol 2:50CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Narayanan SP, Xu Z, Putluri N, Sreekumar A, Lemtalsi T, Caldwell RW, Caldwell RB (2014) Arginase 2 deficiency reduces hyperoxia-mediated retinal neurodegeneration through the regulation of polyamine metabolism. Cell Death Dis 5:e1075CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Muthian G, Raikwar HP, Johnson C, Rajasingh J, Kalgutkar A, Marnett LJ, Bright JJ (2006) Cox-2 inhibitors modulate il-12 signaling through jak-stat pathway leading to th1 response in experimental allergic encephalomyelitis. J Clin Immunol 26:73–85CrossRefPubMedGoogle Scholar
  39. 39.
    dos Santos AC, Barsante MM, Arantes RM, Bernard CC, Teixeira MM, Carvalho-Tavares J (2005) Ccl2 and ccl5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis—an intravital microscopy study. J Neuroimmunol 162:122–129CrossRefPubMedGoogle Scholar
  40. 40.
    Sutton C, Brereton C, Keogh B, Mills KH, Lavelle EC (2006) A crucial role for interleukin (il)-1 in the induction of il-17-producing t cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Grifka-Walk HM, Giles DA, Segal BM (2015) Il-12-polarized th1 cells produce gm-csf and induce eae independent of il-23. Eur J Immunol 45:2780–2786CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Barclay W, Shinohara ML (2017) Inflammasome activation in multiple sclerosis and experimental autoimmune encephalomyelitis (eae). Brain Pathol 27:213–219CrossRefPubMedGoogle Scholar
  43. 43.
    McKenzie BA, Mamik MK, Saito LB, Boghozian R, Monaco MC, Major EO et al (2018) Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc Natl Acad Sci U S A 115:E6065–E6074CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Hoz R, Rojas B, Ramirez AI, Salazar JJ, Gallego BI, Trivino A et al (2016) Retinal macroglial responses in health and disease. Biomed Res Int 2016:2954721PubMedPubMedCentralGoogle Scholar
  45. 45.
    Bao J, Zhu J, Luo S, Cheng Y, Zhou S (2016) Cxcr7 suppression modulates microglial chemotaxis to ameliorate experimentally-induced autoimmune encephalomyelitis. Biochem Biophys Res Commun 469:1–7CrossRefPubMedGoogle Scholar
  46. 46.
    Lu L, Zhang X, Tong H, Zhang W, Xu P, Qu S (2017) Central administration of 5z-7-oxozeaenol protects experimental autoimmune encephalomyelitis mice by inhibiting microglia activation. Front Pharmacol 8:789CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Birkner K, Wasser B, Loos J, Plotnikov A, Seger R, Zipp F, Witsch E, Bittner S (2017) The role of erk signaling in experimental autoimmune encephalomyelitis. Int J Mol Sci 18Google Scholar
  48. 48.
    Das A, Guyton MK, Butler JT, Ray SK, Banik NL (2008) Activation of calpain and caspase pathways in demyelination and neurodegeneration in animal model of multiple sclerosis. CNS Neurol Disord Targets 7:313–320CrossRefGoogle Scholar
  49. 49.
    Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist bad in response to survival factor results in binding to 14-3-3 not bcl-x(l). Cell. 87:619–628CrossRefPubMedGoogle Scholar
  50. 50.
    del Peso L, Gonzalez-Garcia M, Page C, Herrera R, Nunez G (1997) Interleukin-3-induced phosphorylation of bad through the protein kinase akt. Science. 278:687–689CrossRefPubMedGoogle Scholar
  51. 51.
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the ras-mapk signaling pathway by transcription-dependent and -independent mechanisms. Science. 286:1358–1362CrossRefPubMedGoogle Scholar
  52. 52.
    Hobom M, Storch MK, Weissert R, Maier K, Radhakrishnan A, Kramer B, Bähr M, Diem R (2004) Mechanisms and time course of neuronal degeneration in experimental autoimmune encephalomyelitis. Brain Pathol (Zurich, Switzerland) 14:148–157CrossRefGoogle Scholar
  53. 53.
    Sattler MB, Merkler D, Maier K, Stadelmann C, Ehrenreich H, Bahr M et al (2004) Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 11(Suppl 2):S181–S192CrossRefPubMedGoogle Scholar
  54. 54.
    Xu L, Hilliard B, Carmody RJ, Tsabary G, Shin H, Christianson DW, Chen YH (2003) Arginase and autoimmune inflammation in the central nervous system. Immunology. 110:141–148CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Lieven CJ, Hoegger MJ, Schlieve CR, Levin LA (2006) Retinal ganglion cell axotomy induces an increase in intracellular superoxide anion. Invest Ophthalmol Vis Sci 47:1477–1485CrossRefPubMedGoogle Scholar
  56. 56.
    Castegna A, Palmieri L, Spera I, Porcelli V, Palmieri F, Fabis-Pedrini MJ, Kean RB, Barkhouse DA et al (2011) Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neuroscience. 185:97–105CrossRefPubMedGoogle Scholar
  57. 57.
    Giannetti P, Politis M, Su P, Turkheimer F, Malik O, Keihaninejad S, Wu K, Reynolds R et al (2014) Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)c](r)-pk11195-pet pilot study. Neurobiol Dis 65:203–210CrossRefPubMedGoogle Scholar
  58. 58.
    Wu WF, Tan XJ, Dai YB, Krishnan V, Warner M, Gustafsson JA (2013) Targeting estrogen receptor beta in microglia and t cells to treat experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 110:3543–3548CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Howell OW, Rundle JL, Garg A, Komada M, Brophy PJ, Reynolds R (2010) Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J Neuropathol Exp Neurol 69:1017–1033CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dalton DK, Wittmer S (2005) Nitric-oxide-dependent and independent mechanisms of protection from cns inflammation during th1-mediated autoimmunity: evidence from eae in inos ko mice. J Neuroimmunol 160:110–121CrossRefPubMedGoogle Scholar
  61. 61.
    Farias AS, de la Hoz C, Castro FR, Oliveira EC, Ribeiro dos Reis JR, Silva JS et al (2007) Nitric oxide and tnfalpha effects in experimental autoimmune encephalomyelitis demyelination. Neuroimmunomodulation. 14:32–38CrossRefPubMedGoogle Scholar
  62. 62.
    Staykova MA, Fordham SA, Bartell GJ, Cowden WB, Willenborg DO (2006) Nitric oxide contributes to the resistance of young sjl/j mice to experimental autoimmune encephalomyelitis. J Neuroimmunol 176:1–8CrossRefPubMedGoogle Scholar
  63. 63.
    Ljubisavljevic S, Stojanovic I, Pavlovic R, Sokolovic D, Pavlovic D, Cvetkovic T, Stevanovic I (2012) Modulation of nitric oxide synthase by arginase and methylated arginines during the acute phase of experimental multiple sclerosis. J Neurol Sci 318:106–111CrossRefPubMedGoogle Scholar
  64. 64.
    Patel C, Rojas M, Narayanan SP, Zhang W, Xu Z, Lemtalsi T et al (2013) Arginase as a mediator of diabetic retinopathy. Front Immunol 4:173CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Elms S, Chen F, Wang Y, Qian J, Askari B, Yu Y, Pandey D, Iddings J et al (2013) Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and enos. Am J Physiol Heart Circ Physiol 305:H651–H666CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chithra D. Palani
    • 1
    • 2
  • Abdelrahman Y. Fouda
    • 2
    • 3
  • Fang Liu
    • 1
    • 2
  • Zhimin Xu
    • 2
    • 3
  • Eslam Mohamed
    • 4
    • 5
  • Shailedra Giri
    • 6
  • Sylvia B. Smith
    • 2
    • 7
  • Ruth B. Caldwell
    • 2
    • 3
    • 7
    • 8
  • S. Priya Narayanan
    • 1
    • 2
    • 3
    • 8
    Email author
  1. 1.Clinical and Experimental Therapeutics, College of PharmacyUniversity of GeorgiaAugustaUSA
  2. 2.Culver Vision Discovery InstituteAugusta UniversityAugustaUSA
  3. 3.Vascular Biology CenterAugusta UniversityAugustaUSA
  4. 4.Georgia Cancer CenterAugusta UniversityAugustaUSA
  5. 5.Department of ImmunologyMoffitt Cancer CenterTampaUSA
  6. 6.Department of NeurologyHenry Ford Health SystemDetroitUSA
  7. 7.Department of Cellular Biology and AnatomyAugusta UniversityAugustaUSA
  8. 8.Charlie Norwood VA Medical CenterAugustaUSA

Personalised recommendations