Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8364–8375 | Cite as

Chronic Dyrk1 Inhibition Delays the Onset of AD-Like Pathology in 3xTg-AD Mice

  • R. Velazquez
  • B. Meechoovet
  • A. Ow
  • C. Foley
  • A. Shaw
  • B. Smith
  • S. Oddo
  • C. Hulme
  • Travis DunckleyEmail author
Article

Abstract

There is a critical need for new treatment approaches that can slow or prevent the progression of Alzheimer’s disease (AD). Targets that act simultaneously on multiple relevant pathways could have significant therapeutic potential. Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1a) phosphorylates both amyloid precursor protein (APP) and tau. Dyrk1a is upregulated in post-mortem brains of AD patients, and such elevated expression is associated with cognitive deficits. We previously demonstrated that small molecule inhibition of Dyrk1 is well-tolerated and reduces amyloid plaques and pathological forms of tau in 3xTg-AD mice if administered after formation of these pathologies. However, while insoluble forms of hyperphosphorylated tau were reduced by Dyrk1 inhibition, overt neurofibrillary tangle (NFT) pathology remained unchanged. Herein, we specifically test the hypothesis that inhibition of Dyrk1 prior to NFT formation will delay the onset of pathology. 3xTg-AD mice were treated chronically, beginning at 6 months of age, prior to NFT pathology. Mice were dosed daily for either 3 or 6 months and amyloid and tau pathology were assessed. We show that chronic Dyrk1 inhibition reduces insoluble forms of amyloid beta peptides (Aβ) and hyper-phosphorylated tau long-term and that these reductions are associated with dramatic delay in the onset of both amyloid plaques and NFTs. In addition, we show that DYR219, a potent and selective small molecule Dyrk1 inhibitor, induces degradation of Dyrk1a protein, likely contributing to the efficacy of this small molecule approach in vivo. Collectively, these results suggest that therapeutic strategies targeting tau phosphorylation will show the greatest effect if administered very early in the pathogenesis of AD.

Keywords

Alzheimer’s disease DYRK1A Tau Amyloid 3xTg-AD Therapeutics 

Notes

Funding Information

This work was supported by grants R01 AG037637 to S.O., from the Alzheimer’s Drug Discovery Foundation to C.H., and from the Alzheimer’s Drug Discovery Foundation and Harrington Discovery Institute to T.D.

Compliance with Ethical Standards

Animal care and treatments were in accordance with the applicable regulation of the vivarium (The Institutional Animal Care and Use Committee of the Arizona State University).

Supplementary material

12035_2019_1684_MOESM1_ESM.xlsx (14 kb)
Supplemental Table 1 PK results for DYR219. Shown are all time points and replicates detecting brain levels of DYR219 following a single IP injection at 12.5 mg/kg. Summary values are also listed beneath the table. (XLSX 13 kb)

References

  1. 1.
    Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol 41(2–3):392–409CrossRefGoogle Scholar
  2. 2.
    Buccafusco JJ (2009) Multifunctional receptor-directed drugs for disorders of the central nervous system. Neurotherapeutics. 6(1):4–13CrossRefGoogle Scholar
  3. 3.
    Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347–372CrossRefGoogle Scholar
  4. 4.
    Weinreb O, Mandel S, Bar-Am O, Yogev-Falach M, Avramovich-Tirosh Y, Amit T, Youdim MBH (2009) Multifunctional neuroprotective derivatives of rasagiline as anti-Alzheimer’s disease drugs. Neurotherapeutics. 6(1):163–174CrossRefGoogle Scholar
  5. 5.
    Kimura R, Kamino K, Yamamoto M, Nuripa A, Kida T, Kazui H, Hashimoto R, Tanaka T et al (2007) The DYRK1A gene, encoded in chromosome 21 Down syndrome critical region, bridges between beta-amyloid production and tau phosphorylation in Alzheimer disease. Hum Mol Genet 16(1):15–23CrossRefGoogle Scholar
  6. 6.
    Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ, Cho HJ, Lee HW, Kim IS, Cheon YH et al (2007) DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J Biol Chem 282(48):34850–34857CrossRefGoogle Scholar
  7. 7.
    Altafaj X, Dierssen M, Baamonde C, Marti E, Visa J, Guimera J et al (2001) Neurodevelopmental delay, motor abnormalities and cognitive deficits in transgenic mice overexpressing Dyrk1A (minibrain), a murine model of Down’s syndrome. Hum Mol Genet 10(18):1915–1923CrossRefGoogle Scholar
  8. 8.
    Ahn KJ, Jeong HK, Choi HS, Ryoo SR, Kim YJ, Goo JS, Choi SY, Han JS et al (2006) DYRK1A BAC transgenic mice show altered synaptic plasticity with learning and memory defects. Neurobiol Dis 22(3):463–472CrossRefGoogle Scholar
  9. 9.
    Ferrer I, Barrachina M, Puig B, Martinez de Lagran M, Marti E, Avila J et al (2005) Constitutive Dyrk1A is abnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis 20(2):392–400CrossRefGoogle Scholar
  10. 10.
    Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, Ramakrishna N, Gong CX (2008) Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J 22(9):3224–3233CrossRefGoogle Scholar
  11. 11.
    Azorsa DO, Robeson RH, Frost D, Meec hoovet B, Brautigam GR, Dickey C et al (2010) High-content siRNA screening of the kinome identifies kinases involved in Alzheimer’s disease-related tau hyperphosphorylation. BMC Genomics 11:25CrossRefGoogle Scholar
  12. 12.
    Altafaj X, Martin ED, Ortiz-Abalia J, Valderrama A, Lao-Peregrin C, Dierssen M et al (2013) Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis 52:117–127CrossRefGoogle Scholar
  13. 13.
    Pathak A, Rohilla A, Gupta T, Akhtar MJ, Haider MR, Sharma K, Haider K, Yar MS (2018) DYRK1A kinase inhibition with emphasis on neurodegeneration: a comprehensive evolution story-cum-perspective. Eur J Med Chem 158:559–592CrossRefGoogle Scholar
  14. 14.
    Ryoo SR, Cho HJ, Lee HW, Jeong HK, Radnaabazar C, Kim YS, Kim MJ, Son MY et al (2008) Dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1A-mediated phosphorylation of amyloid precursor protein: evidence for a functional link between Down syndrome and Alzheimer’s disease. J Neurochem 104(5):1333–1344CrossRefGoogle Scholar
  15. 15.
    Kim EJ, Sung JY, Lee HJ, Rhim H, Hasegawa M, Iwatsubo T, Min DS, Kim J et al (2006) Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem 281(44):33250–33257CrossRefGoogle Scholar
  16. 16.
    Wegiel J, Dowjat K, Kaczmarski W, Kuchna I, Nowicki K, Frackowiak J, Mazur Kolecka B, Wegiel J et al (2008) The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol 116(4):391–407CrossRefGoogle Scholar
  17. 17.
    Becker W, Weber Y, Wetzel K, Eirmbter K, Tejedor FJ, Joost HG (1998) Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J Biol Chem 273(40):25893–25902CrossRefGoogle Scholar
  18. 18.
    De la Torre R, De Sola S, Pons M, Duchon A, de Lagran MM, Farre M et al (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol Nutr Food Res 58(2):278–288CrossRefGoogle Scholar
  19. 19.
    Branca C, Shaw DM, Belfiore R, Gokhale V, Shaw AY, Foley C, Smith B, Hulme C et al (2017) Dyrk1 inhibition improves Alzheimer’s disease-like pathology. Aging Cell 16(5):1146–1154CrossRefGoogle Scholar
  20. 20.
    Bierer LM, Hof PR, Purohit DP, Carlin L, Schmeidler J, Davis KL, Perl DP (1995) Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer’s disease. Arch Neurol 52(1):81–88CrossRefGoogle Scholar
  21. 21.
    Park J, Yang EJ, Yoon JH, Chung KC (2007) Dyrk1A overexpression in immortalized hippocampal cells produces the neuropathological features of Down syndrome. Mol Cell Neurosci 36(2):270–279CrossRefGoogle Scholar
  22. 22.
    Wegiel J, Gong CX, Hwang YW (2011) The role of DYRK1A in neurodegenerative diseases. FEBS J 278(2):236–245CrossRefGoogle Scholar
  23. 23.
    Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108(14):5819–5824CrossRefGoogle Scholar
  24. 24.
    Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci 30(36):11938–11950CrossRefGoogle Scholar
  25. 25.
    Qi J, Zhang G (2019) Proteolysis-targeting chimeras for targeting protein for degradation. Future Med Chem 11:723–741CrossRefGoogle Scholar
  26. 26.
    Frost D, Meechoovet B, Wang T, Gately S, Giorgetti M, Shcherbakova I, Dunckley T (2011) Beta-carboline compounds, including harmine, inhibit DYRK1A and tau phosphorylation at multiple Alzheimer’s disease-related sites. PLoS One 6(5):e19264CrossRefGoogle Scholar
  27. 27.
    Oddo S, Caccamo A, Kitazawa M, Tseng BP, LaFerla FM (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24(8):1063–1070CrossRefGoogle Scholar
  28. 28.
    Becker W, Sippl W (2011) Activation, regulation, and inhibition of DYRK1A. FEBS J 278(2):246–256CrossRefGoogle Scholar
  29. 29.
    Sonamoto R, Kii I, Koike Y, Sumida Y, Kato-Sumida T, Okuno Y, Hosoya T, Hagiwara M (2015) Identification of a DYRK1A inhibitor that induces degradation of the target kinase using co-chaperone CDC37 fused with luciferase nanoKAZ. Sci Rep 5:12728CrossRefGoogle Scholar
  30. 30.
    Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A et al (2019) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 18(1):e12873Google Scholar
  31. 31.
    Woods YL, Cohen P, Becker W, Jakes R, Goedert M, Wang X et al (2001) The kinase DYRK phosphorylates protein-synthesis initiation factor eIF2Bepsilon at Ser539 and the microtubule-associated protein tau at Thr212: potential role for DYRK as a glycogen synthase kinase 3-priming kinase. Biochem J 355(Pt 3:609–615CrossRefGoogle Scholar
  32. 32.
    Lai AY, McLaurin J (2012) Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Future Neurol 7(2):165–176CrossRefGoogle Scholar
  33. 33.
    Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Abeta immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron. 43(3):321–332CrossRefGoogle Scholar
  34. 34.
    Beke L, Kig C, Linders JT, Boens S, Boeckx A, van Heerde E et al (2015) MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci Rep 35(6):e00267CrossRefGoogle Scholar
  35. 35.
    Gu S, Cui D, Chen X, Xiong X, Zhao Y (2018) PROTACs: an emerging targeting technique for protein degradation in drug discovery. Bioessays. 40(4):e1700247CrossRefGoogle Scholar
  36. 36.
    Caccamo A, Medina DX, Oddo S (2013) Glucocorticoids exacerbate cognitive deficits in TDP-25 transgenic mice via a glutathione-mediated mechanism: implications for aging, stress and TDP-43 proteinopathies. J Neurosci 33(3):906–913CrossRefGoogle Scholar
  37. 37.
    Branca C, Wisely EV, Hartman LK, Caccamo A, Oddo S (2014) Administration of a selective beta2 adrenergic receptor antagonist exacerbates neuropathology and cognitive deficits in a mouse model of Alzheimer’s disease. Neurobiol Aging 35(12):2726–2735CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Neurodegenerative Disease Research Center, Biodesign InstituteArizona State UniversityTempeUSA
  2. 2.Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixUSA
  3. 3.Division of Drug Discovery and Development, Department of Pharmacology and Toxicology, College of PharmacyThe University of ArizonaTucsonUSA
  4. 4.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations