Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8408–8419 | Cite as

Exercise Modalities Improve Aversive Memory and Survival Rate in Aged Rats: Role of Hippocampal Epigenetic Modifications

  • Louisiana Carolina Ferreira de Meireles
  • Fernando GalvãoJr
  • Deena M. Walker
  • Laura Reck Cechinel
  • Ágnis Iohana de Souza Grefenhagen
  • Gisele Andrade
  • Roberta Passos Palazzo
  • Gisele Agustini Lovatel
  • Carla Giovanna Basso
  • Eric J. Nestler
  • Ionara Rodrigues SiqueiraEmail author
Original Article

Abstract

We aimed to investigate the effects of aging and different exercise modalities on aversive memory and epigenetic landscapes at brain-derived neurotrophic factor, cFos, and DNA methyltransferase 3 alpha (Bdnf, cFos, and Dnmt3a, respectively) gene promoters in hippocampus of rats. Specifically, active epigenetic histone markers (H3K9ac, H3K4me3, and H4K8ac) and a repressive mark (H3K9me2) were evaluated. Adult and aged male Wistar rats (2 and 22 months old) were subjected to aerobic, acrobatic, resistance, or combined exercise modalities for 20 min, 3 times a week, during 12 weeks. Aging per se altered histone modifications at the promoters of Bdnf, cFos, and Dnmt3a. All exercise modalities improved both survival rate and aversive memory performance in aged animals (n = 7–10). Exercise altered hippocampal epigenetic marks in an age- and modality-dependent manner (n = 4–5). Aerobic and resistance modalities attenuated age-induced effects on hippocampal Bdnf promoter H3K4me3. Besides, exercise modalities which improved memory performance in aged rats were able to modify H3K9ac or H3K4me3 at the cFos promoter, which could increase gene transcription. Our results highlight biological mechanisms which support the efficacy of all tested exercise modalities attenuating memory deficits induced by aging.

Keywords

Exercise Rats Inhibitory avoidance Aging Histone methylation Histone acetylation Bdnf cFos Dnmt3a 

Notes

Funding Information

This work was supported, in part, by grant PDSE - 88881.135752/2016-01 from Comissão de Aperfeiçoamento de Pessoal (CAPES) from Brazil and P50MH096890 from the US National Institute of Mental Health (E.J. Nestler). CNPq fellowships (Dr. I.R. Siqueira; L.C.F. Meireles, K. Bertoldi and L. R. Cechinel) CAPES fellowship (F.J. Galvão).

Compliance with Ethical Standards

The NIH “Guide for the Care and Use of Laboratory Animals” (NIH publication no. 80–23, revised 1996) was followed in all experiments. The Local Ethics Committee approved all handling and experimental conditions (no. 29818).

Supplementary material

12035_2019_1675_MOESM1_ESM.doc (71 kb)
ESM 1 (DOC 71 kb)

References

  1. 1.
    Hansen RT, Zhang H-T (2013) Senescent-induced dysregulation of cAMP/CREB signaling and correlations with cognitive decline. Brain Res 1516:93–109CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Podtelezhnikov AA, Tanis KQ, Nebozhyn M, Ray WJ, Stone DJ, Loboda AP (2011) Molecular insights into the pathogenesis of Alzheimer’s disease and its relationship to normal aging. PLoS One 6(12):e29610CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barreto G, Huang T-T, Giffard RG (2010) Age-related defects in sensorimotor activity, spatial learning and memory in C57BL/6 mice. J Neurosurg Anesthesiol 22(3):214–219CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lovatel GA, Elsner VR, Bertoldi K, Vanzella C, Moysés Fdos S, Vizuete A, et al. Treadmill exercise induces age-related changes in aversive memory, neuroinflammatory and epigenetic processes in the rat hippocampus. Neurobiol Learn Mem 2013;101(0):94–102.Google Scholar
  5. 5.
    McQuail JA, Beas BS, Kelly KB, Simpson KL, Frazier CJ, Setlow B et al (2016) NR2A-containing NMDARs in the prefrontal cortex are required for working memory and associated with age-related cognitive decline. J Neurosci 36(50):12537–12548CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Peleg S, Feller C, Ladurner AG, Imhof A (2016) The metabolic impact on histone acetylation and transcription in ageing. Trends Biochem Sci 41(8):700–711CrossRefPubMedGoogle Scholar
  7. 7.
    Blasi T, Feller C, Feigelman J, Hasenauer J, Imhof A, Theis FJ, Becker PB, Marr C (2016) Combinatorial histone acetylation patterns are generated by motif-specific reactions. Cell Syst 2(1):49–58CrossRefPubMedGoogle Scholar
  8. 8.
    Benayoun BA, Pollina EA, Brunet A (2015) Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16:593–610CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell. 150(1):12–27CrossRefPubMedGoogle Scholar
  10. 10.
    dos Santos Sant’ AG, Rostirola Elsner V, Moysés F, Reck Cechinel L, Agustini Lovatel G, Rodrigues Siqueira I Histone deacetylase activity is altered in brain areas from aged rats. Neurosci LettGoogle Scholar
  11. 11.
    Elsner VR, Lovatel GA, Moysés F, Bertoldi K, Spindler C, Cechinel LR, Muotri AR, Siqueira IR (2013) Exercise induces age-dependent changes on epigenetic parameters in rat hippocampus: a preliminary study. Exp Gerontol 48(2):136–139CrossRefPubMedGoogle Scholar
  12. 12.
    Perovic M, Tesic V, Djordjevic AM, Smiljanic K, Loncarevic-Vasiljkovic N, Ruzdijic S et al (2013) BDNF transcripts, proBDNF and proNGF, in the cortex and hippocampus throughout the life span of the rat. AGE. 35(6):2057–2070CrossRefPubMedGoogle Scholar
  13. 13.
    Kitraki E, Bozas E, Philippdis H, Stylianopoulou F. Aging-related changes in IGF-II and c-fos gene expression in the rat brain. Int J Dev Neurosci 1993;11(1):1–9, 1.Google Scholar
  14. 14.
    Desjardins S, Mayo W, Vallée M, Hancock D, Le Moal M, Simon H et al Effect of aging on the basal expression of c-fos, c-jun, and egr-1 proteins in the hippocampus. Neurobiol Aging 18(1):37–44Google Scholar
  15. 15.
    Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ et al (2009) Exercise and physical activity for older adults. Med Sci Sports Exerc 41(7):1510–1530CrossRefGoogle Scholar
  16. 16.
    Kang S, Hwang S, Klein AB, Kim SH (2015) Multicomponent exercise for physical fitness of community-dwelling elderly women. J Phys Ther Sci 27(3):911–915CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Akbarian S, Beeri M, Haroutunian V (2013) Epigenetic determinants of healthy and diseased brain aging and cognition. JAMA Neurol 70(6):711–718CrossRefPubMedGoogle Scholar
  18. 18.
    Nelson ME, Rejeski J, Blair SN, Duncan PW, Judge JO, King AC et al (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116:1094–1105CrossRefPubMedGoogle Scholar
  19. 19.
    Venturelli M, Schena F, Richardson RS (2012) The role of exercise capacity in the health and longevity of centenarians. Maturitas. 73(2):115–120CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wright KJ, Thomas MM, Betik AC, Belke D, Hepple RT (2014) Exercise training initiated in late middle age attenuates cardiac fibrosis and advanced glycation end-product accumulation in senescent rats. Exp Gerontol 50:9–18CrossRefPubMedGoogle Scholar
  21. 21.
    Wen CP, Wai JPM, Tsai MK, Yang YC, Cheng TYD, Lee M-C, Chan HT, Tsao CK et al (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet Lond Engl 378(9798):1244–1253CrossRefGoogle Scholar
  22. 22.
    Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med Auckl NZ 37(9):737–763CrossRefGoogle Scholar
  23. 23.
    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM et al (2011) American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43(7)Google Scholar
  24. 24.
    Cassilhas RC, Lee KS, Fernandes J, Oliveira MGM, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience. 202(0):309–317CrossRefPubMedGoogle Scholar
  25. 25.
    Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience. 167(3):588–597CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301CrossRefPubMedGoogle Scholar
  27. 27.
    de Meireles LCF, Bertoldi K, Cechinel LR, Schallenberger BL, da Silva VK, Schröder N, Siqueira IR (2016) Treadmill exercise induces selective changes in hippocampal histone acetylation during the aging process in rats. Neurosci Lett 634:19–24CrossRefPubMedGoogle Scholar
  28. 28.
    Gomez-Pinilla F, Zhuang Y, Feng J, Ying Z, Fan G (2011) Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation. Eur J Neurosci 33(3):383–390CrossRefPubMedGoogle Scholar
  29. 29.
    Gil JH, Kim CK (2015) Effects of different doses of leucine ingestion following eight weeks of resistance exercise on protein synthesis and hypertrophy of skeletal muscle in rats. J Exerc Nutr Biochem 19(1):31–38CrossRefGoogle Scholar
  30. 30.
    Klintsova AY, Dickson E, Yoshida R, Greenough WT (2004) Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res 1028(1):92–104CrossRefPubMedGoogle Scholar
  31. 31.
    Novaes Gomes FG, Fernandes J, Vannucci Campos D, Cassilhas RC, Viana GM, D’Almeida V, de Moraes Rêgo MK, Buainain PI et al (2014) The beneficial effects of strength exercise on hippocampal cell proliferation and apoptotic signaling is impaired by anabolic androgenic steroids. Psychoneuroendocrinology. 50:106–117CrossRefPubMedGoogle Scholar
  32. 32.
    Bayraktar G, Kreutz MR (2017) Neuronal DNA methyltransferases: epigenetic mediators between synaptic activity and gene expression? Neuroscientist 24(2):1073858417707457Google Scholar
  33. 33.
    Arida RM, Scorza FA, dos Santos NF, Peres CA, Cavalheiro EA (1999) Effect of physical exercise on seizure occurrence in a model of temporal lobe epilepsy in rats. Epilepsy Res 37(1):45–52CrossRefPubMedGoogle Scholar
  34. 34.
    Brooks GA, White TP (1978) Determination of metabolic and heart rate responses of rats to treadmill exercise. J Appl Physiol 45(6):1009–1015CrossRefPubMedGoogle Scholar
  35. 35.
    Jones TA, Chu CJ, Grande LA, Gregory AD (1999) Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19(22):10153–10163CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990) Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A 87(14):5568–5572CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lovatel GA, Bertoldi K, Elsner VR, Vanzella C, Moysés Fdos S, Spindler C et al (2012) Time-dependent effects of treadmill exercise on aversive memory and cyclooxygenase pathway function. Neurobiol Learn Mem 98(2):182–187Google Scholar
  38. 38.
    Peña CJ, Kronman HG, Walker DM, Cates HM, Bagot RC, Purushothaman I, Issler O, Loh YHE et al (2017) Early life stress confers lifelong stress susceptibility in mice via ventral tegmental area OTX2. Science. 356(6343):1185–1188CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yankner BA, Lu T, Loerch P (2008) The aging brain. Annu Rev Pathol Mech Dis 3:41–66CrossRefGoogle Scholar
  40. 40.
    Erickson CA, Barnes CA (2003) The neurobiology of memory changes in normal aging. Exp Gerontol 38(1–2):61–69CrossRefPubMedGoogle Scholar
  41. 41.
    Ianov L, Riva A, Kumar A, Foster TC (2017) DNA methylation of synaptic genes in the prefrontal cortex is associated with aging and age-related cognitive impairment. Front Aging Neurosci 9:249CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gupta S, Kim SY, Artis S, Molfese DL, Schumacher A, Sweatt JD, Paylor RE, Lubin FD (2010) Histone methylation regulates memory formation. J Neurosci 30(10):3589–3599CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY et al (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Buhusi M, Etheredge C, Granholm A-C, Buhusi CV (2017) Increased hippocampal proBDNF contributes to memory impairments in aged mice. Front Aging Neurosci 9:284CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Silhol M, Arancibia S, Maurice T, Tapia-Arancibia L (2007) Spatial memory training modifies the expression of brain-derived neurotrophic factor tyrosine kinase receptors in young and aged rats. Neuroscience. 146(3):962–973CrossRefPubMedGoogle Scholar
  46. 46.
    Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD et al (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and Sortilin. J Neurosci 25(22):5455–5463CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Xu Z-Q, Sun Y, Li H-Y, Lim Y, Zhong J-H, Zhou X-F (2011) Endogenous proBDNF is a negative regulator of migration of cerebellar granule cells in neonatal mice. Eur J Neurosci 33(8):1376–1384CrossRefPubMedGoogle Scholar
  48. 48.
    Woo NH, Teng HK, Siao C-J, Chiaruttini C, Pang PT, Milner TA et al (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077Google Scholar
  49. 49.
    Li H, Liang A, Guan F, Fan R, Chi L, Yang B (2013) Regular treadmill running improves spatial learning and memory performance in young mice through increased hippocampal neurogenesis and decreased stress. Brain Res 1531(0):1–8PubMedGoogle Scholar
  50. 50.
    Li Y, Abdourahman A, Tamm JA, Pehrson AL, Sánchez C, Gulinello M (2015) Reversal of age-associated cognitive deficits is accompanied by increased plasticity-related gene expression after chronic antidepressant administration in middle-aged mice. Pharmacol Biochem Behav 135(Supplement C):70–82CrossRefPubMedGoogle Scholar
  51. 51.
    Ono T, Uehara Y, Kurishita A, Tawa R, Sakurai H (1993) Biological significance of DNA methylation in the ageing process. Age Ageing 22(suppl_1):S34–S43CrossRefPubMedGoogle Scholar
  52. 52.
    Graff J, Mansuy IM (2009) Epigenetic dysregulation in cognitive disorders. Eur J Neurosci 30:1–8CrossRefPubMedGoogle Scholar
  53. 53.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21CrossRefPubMedGoogle Scholar
  54. 54.
    Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Morris MJ, Adachi M, Na ES, Monteggia LM (2014) Selective role for DNMT3a in learning and memory. Neurobiol Learn Mem 115:30–37CrossRefPubMedGoogle Scholar
  56. 56.
    Jung M, Pfeifer GP (2015) Aging and DNA methylation. BMC Biol 13:7CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chouliaras L, van den Hove DLA, Kenis G, Dela Cruz J, Lemmens MAM, van Os J et al (2011) Caloric restriction attenuates age-related changes of DNA methyltransferase 3a in mouse hippocampus. Brain Behav Immun 25(4):616–623CrossRefPubMedGoogle Scholar
  58. 58.
    Chouliaras L, van den Hove DLA, Kenis G, Keitel S, Hof PR, van Os J et al (2012) Age-related increase in levels of 5-hydroxymethylcytosine in mouse hippocampus is prevented by caloric restriction. Curr Alzheimer Res 9(5):536–544CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Daniele S, Costa B, Pietrobono D, Giacomelli C, Iofrida C, Trincavelli ML, Fusi J, Franzoni F et al (2018) Epigenetic modifications of the α-synuclein gene and relative protein content are affected by ageing and physical exercise in blood from healthy subjects. Oxidative Med Cell Longev 2018:1–16CrossRefGoogle Scholar
  60. 60.
    Cannon JG, Kluger MJ (1984) Exercise enhances survival rate in mice infected with Salmonella typhimurium. Proc Soc Exp Biol Med 175(4):518–521CrossRefPubMedGoogle Scholar
  61. 61.
    Betik AC, Thomas MM, Wright KJ, Riel CD, Hepple RT (2009) Exercise training from late middle age until senescence does not attenuate the declines in skeletal muscle aerobic function. Am J Phys Regul Integr Comp Phys 297(3):R744–R755Google Scholar
  62. 62.
    Holloszy JO, Smith EK, Vining M, Adams S (1985) Effect of voluntary exercise on longevity of rats. J Appl Physiol 59(3):826–831CrossRefPubMedGoogle Scholar
  63. 63.
    Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H (2012) Exercise and the aging immune system. Ageing Res Rev 11(3):404–420CrossRefPubMedGoogle Scholar
  64. 64.
    Koopman R, van Loon LJC (2009) Aging, exercise, and muscle protein metabolism. J Appl Physiol 106(6):2040–2048CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Elsner VR, José Cunha J, Ineu Figueiredo A, Pires Dorneles G, Peres A, Pochmann D, Padilha de Souza M (2017) The running practice modulates inflammatory markers and not alters global DNA methylation in elderly men. J Exerc Sports Orthop 4(3):1–6CrossRefGoogle Scholar
  66. 66.
    Figueiredo AI, Jose Cunha J, Reichert Vital da Silva I, Luna Martins L, Bard A, Reinaldo G, et al. Running-induced functional mobility improvement in the elderly males is driven by enhanced plasma BDNF levels and the modulation of global histone H4 acetylation status. Middle East J Rehabil Health [Internet]. 2017 Jul 11 [cited 2019 May 26];In Press (In Press). Available from: http://jrehabilhealth.neoscriber.org/en/articles/57486.html
  67. 67.
    da Silva IRV, de Araujo CLP, Dorneles GP, Peres A, Bard AL, Reinaldo G, Teixeira PJZ, Lago PD et al (2017 Aug) Exercise-modulated epigenetic markers and inflammatory response in COPD individuals: A pilot study. Respir Physiol Neurobiol 242:89–95CrossRefPubMedGoogle Scholar
  68. 68.
    Segal SK, Cotman CW, Cahill LF (2012) Exercise-induced noradrenergic activation enhances memory consolidation in both normal aging and patients with amnestic mild cognitive impairment. J Alzheimers Dis 32(4):1011–1018CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Speisman RB, Kumar A, Rani A, Foster TC, Ormerod BK (2013) Daily exercise improves memory, stimulates hippocampal neurogenesis and modulates immune and neuroimmune cytokines in aging rats. Brain Behav Immun 28(0):25–43CrossRefPubMedGoogle Scholar
  70. 70.
    Aguiar AS Jr, Castro AA, Moreira EL, Glaser V, Santos ARS, Tasca CI et al (2011) Short bouts of mild-intensity physical exercise improve spatial learning and memory in aging rats: involvement of hippocampal plasticity via AKT, CREB and BDNF signaling. Mech Ageing Dev 132:560–567CrossRefPubMedGoogle Scholar
  71. 71.
    Cassilhas RC, Lee KS, Venâncio DP, Oliveira MGM, Tufik S, de Mello MT (2012) Resistance exercise improves hippocampus-dependent memory. Braz J Med Biol Res 45(12):1215–1220CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Li Z, Peng X, Xiang W, Han J, Li K The effect of resistance training on cognitive function in the older adults: a systematic review of randomized clinical trials. Aging Clin Exp Res 30:1259–1273.  https://doi.org/10.1007/s40520-018-0998-6
  73. 73.
    Vilela TC, Muller AP, Damiani AP, Macan TP, da Silva S, Canteiro PB, de Sena Casagrande A, Pedroso GS et al (2017) Strength and aerobic exercises improve spatial memory in aging rats through stimulating distinct neuroplasticity mechanisms. Mol Neurobiol 54(10):7928–7937CrossRefPubMedGoogle Scholar
  74. 74.
    Zarrinkalam E, Heidarianpour A, Salehi I, Ranjbar K, Komaki A (2016) Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats. Life Sci 157:19–24CrossRefPubMedGoogle Scholar
  75. 75.
    Abel JL, Rissman EF (2013) Running-induced epigenetic and gene expression changes in the adolescent brain. Int J Dev Neurosci 31(6):382–390CrossRefPubMedGoogle Scholar
  76. 76.
    Ives SJ, Norton C, Miller V, Minicucci O, Robinson J, O’Brien G et al Multi-modal exercise training and protein-pacing enhances physical performance adaptations independent of growth hormone and BDNF but may be dependent on IGF-1 in exercise-trained men. Growth Hormon IGF Res 32:60–70Google Scholar
  77. 77.
    Zhong T, Ren F, Huang CS, Zou WY, Yang Y, Pan YD, Sun B, Wang E et al (2016) Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice. Neuroscience. 316:378–388CrossRefPubMedGoogle Scholar
  78. 78.
    Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT (1996) Synaptogenesis and FOS expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16(14):4529–4535CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Garcia PC, Real CC, Ferreira AFB, Alouche SR, Britto LRG, Pires RS (2012) Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res 1456:36–48CrossRefPubMedGoogle Scholar
  80. 80.
    Cechinel LR, Basso CG, Bertoldi K, Schallenberger B, de Meireles LCF, Siqueira IR (2016) Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats. Behav Brain Res 313:82–87CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Louisiana Carolina Ferreira de Meireles
    • 1
  • Fernando GalvãoJr
    • 1
  • Deena M. Walker
    • 2
  • Laura Reck Cechinel
    • 1
  • Ágnis Iohana de Souza Grefenhagen
    • 3
  • Gisele Andrade
    • 4
  • Roberta Passos Palazzo
    • 4
  • Gisele Agustini Lovatel
    • 5
  • Carla Giovanna Basso
    • 1
  • Eric J. Nestler
    • 2
  • Ionara Rodrigues Siqueira
    • 1
    • 3
    • 4
    Email author
  1. 1.Programa de Pós-Graduação em Ciências Biológicas: FisiologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Neuroscience and Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkUSA
  3. 3.Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Instituto de Ciências Básicas da SaúdeUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e TerapêuticaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Departamento de FisioterapiaUniversidade Federal de Santa CatarinaAraranguáBrazil

Personalised recommendations