Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8392–8407 | Cite as

Neurovascular Drug Biotransformation Machinery in Focal Human Epilepsies: Brain CYP3A4 Correlates with Seizure Frequency and Antiepileptic Drug Therapy

  • Sherice Williams
  • Mohammed Hossain
  • Lisa Ferguson
  • Robyn M. Busch
  • Nicola Marchi
  • Jorge Gonzalez-Martinez
  • Emilio Perucca
  • Imad M. Najm
  • Chaitali GhoshEmail author
Article

Abstract

Pharmacoresistance is a major clinical challenge for approximately 30% of patients with epilepsy. Previous studies indicate nuclear receptors (NRs), drug efflux transporters, and cytochrome P450 enzymes (CYPs) control drug passage across the blood-brain barrier (BBB) in drug-resistant epilepsy. Here, we (1) evaluate BBB changes, neurovascular nuclear receptors, and drug transporters in lesional/epileptic (EPI) and non-lesional/non-epileptic (NON-EPI) regions of the same brain, (2) examine regional CYP expression and activity, and (3) investigate the association among CYP brain expression, seizure frequency, duration of epilepsy, and antiepileptic drug (AED) combination. We used surgically resected brain specimens from patients with medically intractable epilepsy (n = 22) where the epileptogenic loci were well-characterized by invasive and non-invasive methods; histology confirmed distinction of small NON-EPI regions from EPI tissues. NRs, transporters, CYPs, and tight-junction proteins were assessed by western blots/immunohistochemistry, and CYP metabolic activity was determined and compared. The relationship of CYP expression with seizure frequency, duration of epilepsy, and prescribed AEDs was evaluated. Decreased BBB tight-junction proteins accompanied IgG leakage in EPI regions and correlated with upregulated NR and efflux transporter levels. CYP expression and activity significantly increased in EPI compared to NON-EPI tissues. Change in EPI and NON-EPI CYP3A4 expression increased in patients taking AEDs that were CYP substrates, was downregulated when CYP- and non-CYP-substrate AEDs were given together, and correlated with seizure frequency. Our studies suggest focal neurovascular CYP-NR-transporter alterations, as demonstrated by the relationship of seizure frequency and AED combination to brain CYP3A4, might together impact biotransformation machinery of human pharmacoresistant epilepsy.

Keywords

Pharmacoresistant epilepsy Blood-brain barrier Antiepileptic drugs Cytochrome P450 Multiple drug transporters Nuclear receptors 

Notes

Acknowledgments

This work was supported in part by grants R01NS078307 and R01NS095825 from the National Institute of Neurological Disorders and Stroke/National Institutes of Health and by grants awarded from the Brain and Behavior Research Foundation (formerly NARSAD), the American Heart Association (13SDG13950015), and Alternatives Research & Development Foundation. We would like to acknowledge Saurabh Mishra for initial assistance with western blot.

Author Contributions

C.G. designed the experiments and wrote the manuscript. S.W. and M.H. performed the work. C.G., S.W., M.H., N.M., E.P., and I.N. analyzed the data. L.F., I.N., J.G.M. and R.B., helped in tissue procurement. All authors contributed to editing the manuscript.

Compliance with Ethical Standards

Conflict of Interest

J.G.M. has conflict of interest with Zimmer Biomet, Cleveland. I.N. serves on the Speaker’ bureau and as a member of ad hoc advisory board for Eisai, Inc. E.P. received speaker’s or consultancy fees from Axovant, Biogen, Eisai, GW Pharma, Sanofi, Takeda, UCB Pharma and Xenon Pharma. None of the other authors has any potential conflict of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Supplementary material

12035_2019_1673_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)
12035_2019_1673_MOESM2_ESM.png (2.5 mb)
ESM 2 (JPG 2531 kb)
12035_2019_1673_MOESM3_ESM.png (1.6 mb)
ESM 3 (JPG 1652 kb)

References

  1. 1.
    Krauss GL, Sperling MR (2011) Treating patients with medically resistant epilepsy. Neurol Clin Pract 1(1):14–23.  https://doi.org/10.1212/CPJ.0b013e31823d07d1 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kwan P (2011) Defining drug-resistant epilepsy. Neurol Asia 16:67–69Google Scholar
  3. 3.
    Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138(1):103–141.  https://doi.org/10.1016/j.pharmthera.2012.12.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Johannessen SI, Landmark CJ (2010) Antiepileptic drug interactions—principles and clinical implications. Curr Neuropharmacol 8(3):254–267.  https://doi.org/10.2174/157015910792246254 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Perucca E (2006) Clinically relevant drug interactions with antiepileptic drugs. Br J Clin Pharmacol 61(3):246–255.  https://doi.org/10.1111/j.1365-2125.2005.02529.x CrossRefPubMedGoogle Scholar
  6. 6.
    Wallace J, Paauw DS (2015) Appropriate prescribing and important drug interactions in older adults. Med Clin North Am 99(2):295–310.  https://doi.org/10.1016/j.mcna.2014.11.005 CrossRefPubMedGoogle Scholar
  7. 7.
    Zaccara G, Perucca E (2014) Interactions between antiepileptic drugs, and between antiepileptic drugs and other drugs. Epileptic Disord 16(4):409–431.  https://doi.org/10.1684/epd.2014.0714 CrossRefPubMedGoogle Scholar
  8. 8.
    Ghosh C, Gonzalez-Martinez J, Hossain M, Cucullo L, Fazio V, Janigro D, Marchi N (2010) Pattern of P450 expression at the human blood-brain barrier: roles of epileptic condition and laminar flow. Epilepsia 51(8):1408–1417.  https://doi.org/10.1111/j.1528-1167.2009.02428.x CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D (2016) Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 21(10):1609–1619.  https://doi.org/10.1016/j.drudis.2016.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ghosh C, Marchi N, Desai NK, Puvenna V, Hossain M, Gonzalez-Martinez J, Alexopoulos AV, Janigro D (2011) Cellular localization and functional significance of CYP3A4 in the human epileptic brain. Epilepsia 52(3):562–571.  https://doi.org/10.1111/j.1528-1167.2010.02956.x CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lombardo L, Pellitteri R, Balazy M, Cardile V (2008) Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res 5(2):82–92.  https://doi.org/10.2174/156720208784310196 CrossRefPubMedGoogle Scholar
  12. 12.
    Dauchy S, Dutheil F, Weaver RJ, Chassoux F, Daumas-Duport C, Couraud PO, Scherrmann JM, de Waziers I et al (2008) ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood-brain barrier. J Neurochem 107(6):1518–1528.  https://doi.org/10.1111/j.1471-4159.2008.05720.x CrossRefPubMedGoogle Scholar
  13. 13.
    Ghosh C, Hossain M, Mishra S, Khan S, Gonzalez-Martinez J, Marchi N, Janigro D, Bingaman W et al (2018) Modulation of glucocorticoid receptor in human epileptic endothelial cells impacts drug biotransformation in an in vitro blood-brain barrier model. Epilepsia 59(11):2049–2060.  https://doi.org/10.1111/epi.14567 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ghosh C, Hossain M, Solanki J, Najm IM, Marchi N, Janigro D (2017) Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells. Epilepsia 58(4):576–585.  https://doi.org/10.1111/epi.13703 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Urquhart BL, Tirona RG, Kim RB (2007) Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol 47(5):566–578.  https://doi.org/10.1177/0091270007299930 CrossRefPubMedGoogle Scholar
  16. 16.
    Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P (2008) The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences. Annu Rev Pharmacol Toxicol 48:1–32.  https://doi.org/10.1146/annurev.pharmtox.47.120505.105349 CrossRefPubMedGoogle Scholar
  17. 17.
    McFadyen MCE, Melvin WT, Murray GI (1998) Regional distribution of individual forms of cytochrome P450 mRNA in normal adult human brain. Biochem Pharmacol 55(6):825–830.  https://doi.org/10.1146/annurev.pharmtox.47.120505.105349 CrossRefPubMedGoogle Scholar
  18. 18.
    Miksys S, Rao Y, Sellers EM, Kwan M, Mendis D, Tyndale RF (2000) Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica 30(6):547–564.  https://doi.org/10.1080/004982500406390 CrossRefPubMedGoogle Scholar
  19. 19.
    Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 27(6):406–415PubMedPubMedCentralGoogle Scholar
  20. 20.
    Zamaratskaia G, Zlabek V (2009) EROD and MROD as markers of cytochrome P450 1A activities in hepatic microsomes from entire and castrated male pigs. Sensors (Basel) 9(3):2134–2147.  https://doi.org/10.3390/s90302134 CrossRefGoogle Scholar
  21. 21.
    Kabat J, Krol P (2012) Focal cortical dysplasia - review. Pol J Radiol 77(2):35–43CrossRefGoogle Scholar
  22. 22.
    Najm IM, Sarnat HB, Blumcke I (2018) Review: the international consensus classification of focal cortical dysplasia—a critical update 2018. Neuropathol Appl Neurobiol 44(1):18–31.  https://doi.org/10.1111/nan.12462 CrossRefPubMedGoogle Scholar
  23. 23.
    Najm IM, Tassi L, Sarnat HB, Holthausen H, Russo GL (2014) Epilepsies associated with focal cortical dysplasias (FCDs). Acta Neuropathol 128(1):5–19.  https://doi.org/10.1007/s00401-014-1304-0 CrossRefPubMedGoogle Scholar
  24. 24.
    Liu JY, Thom M, Catarino CB et al (2012) Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy. Brain 135(Pt 10):3115–3133.  https://doi.org/10.1093/brain/aws147 CrossRefPubMedGoogle Scholar
  25. 25.
    van Vliet EA, Aronica E, Gorter JA (2014) Role of blood-brain barrier in temporal lobe epilepsy and pharmacoresistance. Neuroscience 277:455–473.  https://doi.org/10.1016/j.neuroscience CrossRefPubMedGoogle Scholar
  26. 26.
    Ishihara H, Kubota H, Lindberg RL et al (2008) Endothelial cell barrier impairment induced by glioblastomas and transforming growth factor beta2 involves matrix metalloproteinases and tight junction proteins. J Neuropathol Exp Neurol 67(5):435–448.  https://doi.org/10.1097/NEN.0b013e31816fd622 CrossRefPubMedGoogle Scholar
  27. 27.
    Librizzi L, de Cutis M, Janigro D, Runtz L, de Bock F, Barbier EL, Marchi N (2018) Cerebrovascular heterogeneity and neuronal excitability. Neurosci Lett 667:75–83.  https://doi.org/10.1016/j.neulet.2017.01.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH et al (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105(6):586–592.  https://doi.org/10.1007/s00401-003-0688-z CrossRefPubMedGoogle Scholar
  29. 29.
    Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A (2004) Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24(36):7829–7836.  https://doi.org/10.1523/JNEUROSCI.1751-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U et al (2007) TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 130(Pt 2):535–547.  https://doi.org/10.1093/brain/awl317 CrossRefPubMedGoogle Scholar
  31. 31.
    Marchi N, Betto G, Fazio V, Fan Q, Ghosh C, Machado A, Janigro D (2009) Blood-brain barrier damage and brain penetration of antiepileptic drugs: role of serum proteins and brain edema. Epilepsia 50(4):664–677.  https://doi.org/10.1111/j.1528-1167.2008.01989.x CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ghersi-Egea JF, Leininger-Muller B, Cecchelli R et al (1995) Blood-brain interfaces: relevance to cerebral drug metabolism. Toxicol Lett 82-83:645–653CrossRefGoogle Scholar
  33. 33.
    Ghosh C, Marchi N, Hossain M, Rasmussen P, Alexopoulos AV, Gonzalez-Martinez J, Yang H, Janigro D (2012) A pro-convulsive carbamazepine metabolite: quinolinic acid in drug resistant epileptic human brain. Neurobiol Dis 46(3):692–700.  https://doi.org/10.1016/j.nbd.2012.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ghosh C, Puvenna V, Gonzalez-Martinez J, Janigro D, Marchi N (2011) Blood-brain barrier P450 enzymes and multidrug transporters in drug resistance: a synergistic role in neurological diseases. Curr Drug Metab 12(8):742–749.  https://doi.org/10.2174/138920011798357051 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bauer B, Hartz AM, Fricker G, Miller DS (2004) Pregnane X receptor up-regulation of P-glycoprotein expression and transport function at the blood-brain barrier. Mol Pharmacol 66(3):413–419.  https://doi.org/10.1124/mol.66.3 CrossRefPubMedGoogle Scholar
  36. 36.
    Hartz AM, Pekcec A, Soldner EL et al (2017) P-gp protein expression and transport activity in rodent seizure models and human epilepsy. Mol Pharm 14(4):999–1011.  https://doi.org/10.1021/acs.molpharmaceut.6b00770 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Boussadia B, Gangarossa G, Mselli-Lakhal L, Rousset MC, de Bock F, Lassere F, Ghosh C, Pascussi JM et al (2016) Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo. Exp Neurol 283:39–48.  https://doi.org/10.1016/j.expneurol.2016.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Boussadia B, Lakhal L, Payrastre L, Ghosh C, Pascussi JM, Gangarossa G, Marchi N (2018) Pregnane X receptor deletion modifies recognition memory and electroencephalographic activity. Neuroscience 370:130–138.  https://doi.org/10.1016/j.neuroscience.2017.07.038 CrossRefPubMedGoogle Scholar
  39. 39.
    Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, de Waziers I et al (2009) Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 77(5):897–909.  https://doi.org/10.1016/j.bcp.2008.11.001 CrossRefPubMedGoogle Scholar
  40. 40.
    Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D (2013) Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia 54(1):11–27.  https://doi.org/10.1111/j.1528-1167.2012.03671.x CrossRefPubMedGoogle Scholar
  41. 41.
    Loscher W, Potschka H (2002) Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 301(1):7–14.  https://doi.org/10.1124/jpet.301.1.7 CrossRefPubMedGoogle Scholar
  42. 42.
    Buckmaster PS, Abrams E, Wen X (2017) Seizure frequency correlates with loss of dentate gyrus GABAergic neurons in a mouse model of temporal lobe epilepsy. J Comp Neurol 525(11):2592–2610.  https://doi.org/10.1002/cne.24226 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, Schoch S, Becker AJ et al (2013) TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 22(8):675–678.  https://doi.org/10.1016/j.seizure.2013.04.023 CrossRefPubMedGoogle Scholar
  44. 44.
    Loscher W, Brandt C (2010) High seizure frequency prior to antiepileptic treatment is a predictor of pharmacoresistant epilepsy in a rat model of temporal lobe epilepsy. Epilepsia 51(1):89–97.  https://doi.org/10.1111/j.1528-1167.2009.02183.x CrossRefPubMedGoogle Scholar
  45. 45.
    Hitiris N, Mohanraj R, Norrie J, Sills GJ, Brodie MJ (2007) Predictors of pharmacoresistant epilepsy. Epilepsy Res 75(2–3):192–196.  https://doi.org/10.1016/j.eplepsyres.2007.06.003 CrossRefPubMedGoogle Scholar
  46. 46.
    Meyer RP, Gehlhaus M, Knoth R, Volk B (2007) Expression and function of cytochrome p450 in brain drug metabolism. Curr Drug Metab 8(4):297–306.  https://doi.org/10.2174/138920007780655478 CrossRefPubMedGoogle Scholar
  47. 47.
    Ghosh C, Hossain M, Spriggs A, Ghosh A, Grant GA, Marchi N, Perucca E, Janigro D (2015) Sertraline-induced potentiation of the CYP3A4-dependent neurotoxicity of carbamazepine: an in vitro study. Epilepsia 56(3):439–449.  https://doi.org/10.1111/epi.12923 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Spina E, Pisani F, Perucca E (1996) Clinically significant pharmacokinetic drug interactions with carbamazepine. An update. Clin Pharmacokinet 31(3):198–214.  https://doi.org/10.2165/00003088-199631030-00004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sherice Williams
    • 1
  • Mohammed Hossain
    • 1
  • Lisa Ferguson
    • 2
  • Robyn M. Busch
    • 2
  • Nicola Marchi
    • 3
  • Jorge Gonzalez-Martinez
    • 2
  • Emilio Perucca
    • 4
  • Imad M. Najm
    • 2
  • Chaitali Ghosh
    • 1
    • 5
    Email author
  1. 1.Cerebrovascular Research Laboratory, Department of Biomedical EngineeringLerner Research Institute, Cleveland ClinicClevelandUSA
  2. 2.Epilepsy Center, Neurological InstituteCleveland ClinicClevelandUSA
  3. 3.Cerebrovascular Mechanisms of Brain Disorders Laboratory, Department of Neuroscience, Institute of Functional Genomics (CNRS-INSERM)University of MontpellierMontpellierFrance
  4. 4.Department of Internal Medicine and TherapeuticsUniversity of Pavia, Clinical Trial Center, IRCCS Mondino FoundationPaviaItaly
  5. 5.Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve UniversityCleveland ClinicClevelandUSA

Personalised recommendations