Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8296–8305 | Cite as

Influence of Matrix Metallopeptidase 9 on Beta-Amyloid Elimination Across the Blood-Brain Barrier

  • Ben Shackleton
  • Charis Ringland
  • Laila Abdullah
  • Michael Mullan
  • Fiona Crawford
  • Corbin BachmeierEmail author
Article

Abstract

Lipoprotein receptor transport across the blood-brain barrier (BBB) mediates beta-amyloid (Aβ) accumulation in the brain and may be a contributing factor in Alzheimer’s disease (AD) pathogenesis. Lipoprotein receptors are susceptible to proteolytic shedding at the cell surface, which precludes the endocytic transport of ligands. A ligand that closely interacts with the lipoprotein receptors is apolipoprotein E (apoE), which exists as three isoforms (apoE2, apoE3, apoE4). Our prior work showed an inverse relationship between lipoprotein receptor shedding and Aβ transport across the BBB, which was apoE-isoform dependent. To interrogate this further, the current studies investigated an enzyme implicated in lipoprotein receptor shedding, matrix metalloproteinase 9 (MMP9). Treatment with MMP9 dose-dependently elevated lipoprotein receptor shedding in brain endothelial cells and freshly isolated mouse cerebrovessels. Furthermore, treatment with a MMP9 inhibitor (SB-3CT) mitigated Aβ-induced lipoprotein receptor shedding in brain endothelial cells and the brains of apoE4 animals. In terms of BBB transit, SB-3CT treatment increased the transport of Aβ across an in vitro model of the BBB. In vivo, administration of SB-3CT to apoE4 animals significantly enhanced Aβ clearance from the brain to the periphery following intracranial administration of Aβ. The current studies show that MMP9 impacts lipoprotein receptor shedding and Aβ transit across the BBB, in an apoE  isoform-specific manner. In total, MMP9 inhibition can facilitate Aβ clearance across the BBB, which could be an effective approach to lowering Aβ levels in the brain and mitigating the AD phenotype, particularly in subjects carrying the apoE4 allele.

Keywords

Alzheimer’s disease Amyloid Matrix metallopeptidase 9 Apolipoprotein E Blood-brain barrier Shedding Low-density lipoprotein receptor-related protein 1 Low-density lipoprotein receptor 

Notes

Acknowledgments

We would like to thank the Roskamp Foundation for their generosity in helping to make this work possible.

Funding Information

This work was supported by Merit Review award number I01BX002839 from the United States (U.S.) Department of Veterans Affairs (VA) Biomedical Laboratory Research and Development Program. The research in this publication was also supported by the National Institute on Aging of the National Institutes of Health under award number R01AG041971.

Compliance with Ethical Standards

Conflict of Interest

Dr. Bachmeier is a Research Scientist at the Bay Pines VA Healthcare System, Bay Pines, FL.

Disclaimer

The contents do not represent the views of the U.S. Department of Veterans Affairs or the United States Government. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Reitz C (2012) Alzheimer's disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012:1–11CrossRefGoogle Scholar
  2. 2.
    Citron M (2010) Alzheimer's disease: Strategies for disease modification. Nat Rev Drug Discov 9(5):387–398PubMedCrossRefGoogle Scholar
  3. 3.
    Castellano JM, Kim J, Stewart FR, Jiang H, DeMattos RB, Patterson BW, Fagan AM, Morris JC et al (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3(89):57–67CrossRefGoogle Scholar
  4. 4.
    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science 330(6012):1774PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 8(6):595–608PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Krohn M, Lange C, Hofrichter J, Scheffler K, Stenzel J, Steffen J, Schumacher T, Bruning T et al (2011) Cerebral amyloid-beta proteostasis is regulated by the membrane transport protein ABCC1 in mice. J Clin Invest 121(10):3924–3931PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Castellano JM, Deane R, Gottesdiener AJ, Verghese PB, Stewart FR, West T, Paoletti AC, Kasper TR et al (2012) Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood Abeta clearance in a mouse model of beta-amyloidosis. Proc Natl Acad Sci U S A 109(38):15502–15507PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Storck SE, Pietrzik CU (2017) Endothelial LRP1 - a potential target for the treatment of Alzheimer's disease: theme: drug discovery, development and delivery in Alzheimer's disease guest editor: Davide Brambilla. Pharm Res 34(12):2637–2651PubMedCrossRefGoogle Scholar
  9. 9.
    Rebeck GW, LaDu MJ, Estus S, Bu G, Weeber EJ (2006) The generation and function of soluble apoE receptors in the CNS. Mol Neurodegener 1:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Selvais C, Dedieu S, Hornebeck W, Emonard H (2010) Post-translational proteolytic events influence LRP-1 functions. Biomed Mater Eng 20(3):203–207PubMedGoogle Scholar
  11. 11.
    Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer's disease. Neuron 63(3):287–303PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bachmeier C, Paris D, Beaulieu-Abdelahad D, Mouzon B, Mullan M, Crawford F (2013) A multifaceted role for apoE in the clearance of beta-amyloid across the blood-brain barrier. Neurodegener Dis 11(1):13–21PubMedCrossRefGoogle Scholar
  13. 13.
    Bachmeier C, Shackleton B, Ojo J, Paris D, Mullan M, Crawford F (2014) Apolipoprotein E isoform-specific effects on lipoprotein receptor processing. NeuroMolecular Med 16(4):686–696PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Talamagas AA, Efthimiopoulos S, Tsilibary EC, Figueiredo-Pereira ME, Tzinia AK (2007) Abeta(1-40)-induced secretion of matrix metalloproteinase-9 results in sAPPalpha release by association with cell surface APP. Neurobiol Dis 28(3):304–315PubMedCrossRefGoogle Scholar
  15. 15.
    Hahn-Dantona E, Ruiz JF, Bornstein P, Strickland DK (2001) The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism. J Biol Chem 276(18):15498–15503PubMedCrossRefGoogle Scholar
  16. 16.
    Mantuano E, Inoue G, Li X, Takahashi K, Gaultier A, Gonias SL, Campana WM (2008) The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein. J Neurosci 28(45):11571–11582PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Selvais C, D'Auria L, Tyteca D, Perrot G, Lemoine P, Troeberg L, Dedieu S, Noel A et al (2011) Cell cholesterol modulates metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 (LRP-1) and clearance function. FASEB J 25(8):2770–2781PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Selvais C, Gaide Chevronnay HP, Lemoine P, Dedieu S, Henriet P, Courtoy PJ, Marbaix E, Emonard H (2009) Metalloproteinase-dependent shedding of low-density lipoprotein receptor-related protein-1 ectodomain decreases endocytic clearance of endometrial matrix metalloproteinase-2 and -9 at menstruation. Endocrinology 150(8):3792–3799PubMedCrossRefGoogle Scholar
  19. 19.
    Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C et al (2012) Apolipoprotein E controls cerebrovascular integrity via cyclophilin a. Nature 485(7399):512–516PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Teng Z, Guo Z, Zhong J, Cheng C, Huang Z, Wu Y, Tang S, Luo C et al (2017) ApoE influences the blood-brain barrier through the NF-kappaB/MMP-9 pathway after traumatic brain injury. Sci Rep 7(1):6649PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Halliday MR, Rege SV, Ma Q, Zhao Z, Miller CA, Winkler EA, Zlokovic BV (2016) Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J Cereb Blood Flow Metab 36(1):216–227PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Main BS, Villapol S, Sloley SS, Barton DJ, Parsadanian M, Agbaegbu C, Stefos K, McCann MS et al (2018) Apolipoprotein E4 impairs spontaneous blood brain barrier repair following traumatic brain injury. Mol Neurodegener 13(1):17PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sullivan PM, Mezdour H, Aratani Y, Knouff C, Najib J, Reddick RL, Quarfordt SH, Maeda N (1997) Targeted replacement of the mouse apolipoprotein E gene with the common human APOE3 allele enhances diet-induced hypercholesterolemia and atherosclerosis. J Biol Chem 272(29):17972–17980PubMedCrossRefGoogle Scholar
  24. 24.
    Bachmeier C, Beaulieu-Abdelahad D, Crawford F, Mullan M, Paris D (2013) Stimulation of the retinoid X receptor facilitates beta-amyloid clearance across the blood-brain barrier. J Mol Neurosci 49(2):270–276PubMedCrossRefGoogle Scholar
  25. 25.
    Bachmeier C, Mullan M, Paris D (2010) Characterization and use of human brain microvascular endothelial cells to examine beta-amyloid exchange in the blood-brain barrier. Cytotechnology 62(6):519–529PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Paris D, Bachmeier C, Patel N, Quadros A, Volmar CH, Laporte V, Ganey J, Beaulieu-Abdelahad D et al (2011) Selective antihypertensive dihydropyridines lower abeta accumulation by targeting both the production and the clearance of abeta across the blood-brain barrier. Mol Med 17(3–4):149–162PubMedCrossRefGoogle Scholar
  27. 27.
    Cui J, Chen S, Zhang C, Meng F, Wu W, Hu R, Hadass O, Lehmidi T et al (2012) Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 7:21PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gu Z, Cui J, Brown S, Fridman R, Mobashery S, Strongin AY, Lipton SA (2005) A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 25(27):6401–6408PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mayer CA, Brunkhorst R, Niessner M, Pfeilschifter W, Steinmetz H, Foerch C (2013) Blood levels of glial fibrillary acidic protein (GFAP) in patients with neurological diseases. PLoS One 8(4):e62101PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Missler U, Wiesmann M, Wittmann G, Magerkurth O, Hagenstrom H (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45(1):138–141PubMedGoogle Scholar
  31. 31.
    Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M, Kim J, Eimer WA et al (2012) APOE4-specific changes in abeta accumulation in a new transgenic mouse model of Alzheimer disease. J Biol Chem 287(50):41774–41786PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Tai LM, Balu D, Avila-Munoz E, Abdullah L, Thomas R, Collins N, Valencia-Olvera AC, LaDu MJ (2017) EFAD transgenic mice as a human APOE relevant preclinical model of Alzheimer's disease. J Lipid Res 58(9):1733–1755PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bell RD, Sagare AP, Friedman AE, Bedi GS, Holtzman DM, Deane R, Zlokovic BV (2007) Transport pathways for clearance of human Alzheimer's amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J Cereb Blood Flow Metab 27(5):909–918PubMedCrossRefGoogle Scholar
  34. 34.
    Lee JM, Yin K, Hsin I, Chen S, Fryer JD, Holtzman DM, Hsu CY, Xu J (2005) Matrix metalloproteinase-9 in cerebral-amyloid-angiopathy-related hemorrhage. J Neurol Sci 229-230:249–254PubMedCrossRefGoogle Scholar
  35. 35.
    Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, Mihaljevic I, Bogdahn U et al (2011) Amyloid-beta contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 43(2):514–523PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Shackleton B, Crawford F, Bachmeier C (2016) Inhibition of ADAM10 promotes the clearance of abeta across the BBB by reducing LRP1 ectodomain shedding. Fluids Barriers CNS 13(1):14PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Mizoguchi H, Takuma K, Fukuzaki E, Ibi D, Someya E, Akazawa KH, Alkam T, Tsunekawa H et al (2009) Matrix metalloprotease-9 inhibition improves amyloid beta-mediated cognitive impairment and neurotoxicity in mice. J Pharmacol Exp Ther 331(1):14–22PubMedCrossRefGoogle Scholar
  38. 38.
    Bales KR, Liu F, Wu S, Lin S, Koger D, DeLong C, Hansen JC, Sullivan PM et al (2009) Human APOE isoform-dependent effects on brain beta-amyloid levels in PDAPP transgenic mice. J Neurosci 29(21):6771–6779PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Schmechel DE, Saunders AM, Strittmatter WJ, Crain BJ, Hulette CM, Joo SH, Pericak-Vance MA, Goldgaber D et al (1993) Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 90(20):9649–9653PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.The Roskamp InstituteSarasotaUSA
  2. 2.The Open UniversityMilton KeynesUK
  3. 3.James A. Haley Veterans’ HospitalTampaUSA
  4. 4.Bay Pines VA Healthcare SystemBay PinesUSA

Personalised recommendations