Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8220–8236 | Cite as

Autophagy Induction by Bexarotene Promotes Mitophagy in Presenilin 1 Familial Alzheimer’s Disease iPSC-Derived Neural Stem Cells

  • Patricia Martín-MaestroEmail author
  • Andrew Sproul
  • Hector Martinez
  • Dominik Paquet
  • Meri Gerges
  • Scott Noggle
  • Anatoly A. Starkov
Article

Abstract

Adult neurogenesis defects have been demonstrated in the brains of Alzheimer’s disease (AD) patients. The neurogenesis impairment is an early critical event in the course of familiar AD (FAD) associated with neuronal loss. It was suggested that neurologic dysfunction in AD may be caused by impaired functioning of hippocampal neural stem cells (NSCs). Multiple metabolic and structural abnormalities in neural mitochondria have long been suspected to play a critical role in AD pathophysiology. We hypothesize that the cause of such abnormalities could be defective elimination of damaged mitochondria. In the present study, we evaluated mitophagy efficacy in a cellular AD model, hiPSC-derived NSCs harboring the FAD-associated PS1 M146L mutation. We found several mitochondrial respiratory chain defects such as lower expression levels of cytochrome c oxidase (complex IV), cytochrome c reductase (complex III), succinate dehydrogenase (complex II), NADH:CoQ reductase (complex I), and also ATP synthase (complex V), most of which had been previously associated with AD. The mitochondrial network morphology and abundance in these cells was aberrant. This was associated with a marked mitophagy failure stemming from autophagy induction blockage, and deregulation of the expression of proteins involved in mitochondrial dynamics. We show that treating these cells with autophagy-stimulating drug bexarotene restored autophagy and compensated mitochondrial anomalies in PS1 M146L NSCs, by enhancing the clearance of mitochondria. Our data support the hypothesis that pharmacologically induced mitophagy enhancement is a relevant and novel therapeutic strategy for the treatment of AD.

Keywords

Alzheimer’s disease Presenilin 1 Mitophagy hiPSC-derived neural stem cells Bexarotene 

Abbreviations

(AD)

Alzheimer’s disease

(Aβ)

amyloid beta

(APP)

amyloid beta (A4) precursor protein

(AVs)

autophagic vacuoles

(Baf A1)

bafilomycin A1

(CCCP)

carbonyl cyanide m-chlorophenylhydrazone

(DLP1)

dynamin-like protein 1

(FAD)

familial Alzheimer’s disease

(GAPDH)

glyceraldehyde-3-phosphate dehydrogenase

(iPSC)

induced pluripotent stem cells

HAR

hexaammineruthenium (III)

(LAMP1)

lysosomal-associated membrane protein 1

(MAP1LC3/LC3)

microtubule-associated protein 1 light chain 3

(mtDNA)

mitochondrial DNA

(MFN1)

mitofusin 1

(MFN2)

mitofusin 2

(NPCs)

neural progenitor cells

(OPA1)

optic atrophy 1

(OPTN)

optineurin

(OXPHOS)

oxidative phosphorylation system

(PSEN)

presenilin

(PINK1)

PTEN-induced putative kinase 1

(ROS)

reactive oxygen species

(RXR)

retinoid X receptor

(TFEB)

transcription factor EB

(TOMM20)

translocase of outer mitochondrial membrane 20 homolog

Notes

Acknowledgments

We would like to thank Marc Tessier-Lavigne for supporting the generation of cell lines, Matt Zimmer for performing FACS on GFP/RFP double-transfected cells to help generate PS1 M146L knockin iPSCs, Brian Campos for technical assistance in screening candidate clones, and Ana Sevilla for performing iPSC immunostaining characterization.

Authors’ Contributions

PMM designed, performed, analyzed, and interpreted data as well as wrote the manuscript; AS, HM, DP, MTL CLM, and SN generated hiPSC-derived NSCs harboring the FAD-associated mutation. MG performed OXPHOS studies. AS and AAS contributed to data interpretation and manuscript editing. All authors read and approved the final manuscript.

Funding

This work was supported by the NIA Grant P01AG014930 (A.A.S. and S.N.).

Compliance with Ethical Standards

Ethics Approval and Consent to Participate

Human subject research at the New York Stem Cell Foundation was performed in accordance with applicable federal and state regulations, as well as with guidelines established by the National Institutes of Health (NIH), National Academy of Sciences (NAS), and International Society for Stem Cell Research (ISSCR). It was also fully compliant with standards outlined in the Health Insurance Portability and Accountability Act (HIPAA) and in the Office for Human Research Protections (OHRP) recommendations.

Consent for Publication

All authors declare their consent for publication of this manuscript.

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

12035_2019_1665_MOESM1_ESM.pdf (2.6 mb)
ESM 1 (PDF 2682 kb)

References

  1. 1.
    Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356CrossRefPubMedGoogle Scholar
  2. 2.
    Holtzman DM et al (2011) Mapping the road forward in Alzheimer’s disease. Sci Transl Med 3(114):114ps48CrossRefPubMedGoogle Scholar
  3. 3.
    Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ryan NS, Rossor MN (2010) Correlating familial Alzheimer’s disease gene mutations with clinical phenotype. Biomark Med 4(1):99–112CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G et al (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in vivo. Neuron 17(5):1005–1013CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660CrossRefPubMedGoogle Scholar
  7. 7.
    Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Demars M et al (2010) Impaired neurogenesis is an early event in the etiology of familial Alzheimer’s disease in transgenic mice. J Neurosci Res 88(10):2103–2117CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Li B et al (2008) Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol 67(1):78–84CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wong PC, Zheng H, Chen H, Becher MW, Sirinathsinghji DJ, Trumbauer ME, Chen HY, Price DL et al (1997) Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387(6630):288–292CrossRefPubMedGoogle Scholar
  11. 11.
    Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S (1997) Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89(4):629–639CrossRefPubMedGoogle Scholar
  12. 12.
    Chen Q, Nakajima A, Choi SH, Xiong X, Sisodia SS, Tang YP (2008) Adult neurogenesis is functionally associated with AD-like neurodegeneration. Neurobiol Dis 29(2):316–326CrossRefPubMedGoogle Scholar
  13. 13.
    Haughey NJ et al (2002) Disruption of neurogenesis by amyloid beta-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer’s disease. J Neurochem 83(6):1509–1524CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang C et al (2007) Long-lasting impairment in hippocampal neurogenesis associated with amyloid deposition in a knock-in mouse model of familial Alzheimer’s disease. Exp Neurol 204(1):77–87CrossRefPubMedGoogle Scholar
  15. 15.
    Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–281CrossRefPubMedGoogle Scholar
  16. 16.
    Papa S et al (2004) Respiratory complex I in brain development and genetic disease. Neurochem Res 29(3):547–560CrossRefPubMedGoogle Scholar
  17. 17.
    Calingasan NY et al (2008) Influence of mitochondrial enzyme deficiency on adult neurogenesis in mouse models of neurodegenerative diseases. Neuroscience 153(4):986–996CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kathleen Baxter K et al (2009) The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 1(4):195–211Google Scholar
  19. 19.
    Kirby DM, Rennie KJ, Smulders-Srinivasan TK, Acin-Perez R, Whittington M, Enriquez JA, Trevelyan AJ, Turnbull DM et al (2009) Transmitochondrial embryonic stem cells containing pathogenic mtDNA mutations are compromised in neuronal differentiation. Cell Prolif 42(4):413–424CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Voloboueva LA, Giffard RG (2011) Inflammation, mitochondria, and the inhibition of adult neurogenesis. J Neurosci Res 89(12):1989–1996CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Khacho M et al (2016) Mitochondrial dynamics impacts stem cell identity and fate decisions by regulating a nuclear transcriptional program. Cell Stem Cell 19(2):232–247CrossRefPubMedGoogle Scholar
  22. 22.
    Bonda DJ, Wang X, Perry G, Nunomura A, Tabaton M, Zhu X, Smith MA (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59(4–5):290–294CrossRefPubMedGoogle Scholar
  23. 23.
    Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8(1):3–5CrossRefPubMedGoogle Scholar
  24. 24.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1):9–14CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Narendra DP et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RLA, Kim J, May J, Tocilescu MA et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107(1):378–383CrossRefPubMedGoogle Scholar
  27. 27.
    Geisler S et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131CrossRefPubMedGoogle Scholar
  28. 28.
    Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AHV, Taanman JW (2010) Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum Mol Genet 19(24):4861–4870CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bjorkoy G et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Martin-Maestro P et al (2016) PARK2 enhancement is able to compensate mitophagy alterations found in sporadic Alzheimer’s disease. Hum Mol Genet 25(4):792–806CrossRefPubMedGoogle Scholar
  31. 31.
    Martin-Maestro P et al (2017) Mitophagy failure in fibroblasts and iPSC-derived neurons of Alzheimer’s disease-associated presenilin 1 mutation. Front Mol Neurosci 10:291CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, Szweda LI et al (2007) Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy 3(6):614–615CrossRefPubMedGoogle Scholar
  33. 33.
    Moreira PI et al (2007) Autophagocytosis of mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol 66(6):525–532CrossRefPubMedGoogle Scholar
  34. 34.
    Sodhi RK, Singh N (2014) Retinoids as potential targets for Alzheimer’s disease. Pharmacol Biochem Behav 120:117–123CrossRefPubMedGoogle Scholar
  35. 35.
    Henney JE (2000) From the Food and Drug Administration. JAMA 283(9):1131CrossRefPubMedGoogle Scholar
  36. 36.
    Abba MC, Hu Y, Levy CC, Gaddis S, Kittrell FS, Zhang Y, Hill J, Bissonnette RP et al (2008) Transcriptomic signature of bexarotene (rexinoid LGD1069) on mammary gland from three transgenic mouse mammary cancer models. BMC Med Genet 1:40Google Scholar
  37. 37.
    McFarland K, Spalding TA, Hubbard D, Ma JN, Olsson R, Burstein ES (2013) Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson's disease. ACS Chem Neurosci 4(11):1430–1438CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Riancho J et al (2015) Neuroprotective effect of bexarotene in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Front Cell Neurosci 9:250CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bomben V et al (2014) Bexarotene reduces network excitability in models of Alzheimer’s disease and epilepsy. Neurobiol Aging 35(9):2091–2095CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cramer PE et al (2012) ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models. Science 335(6075):1503–1506CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moutinho M, Landreth GE (2017) Therapeutic potential of nuclear receptor agonists in Alzheimer’s disease. J Lipid Res 58(10):1937–1949CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cummings JL et al (2016) Double-blind, placebo-controlled, proof-of-concept trial of bexarotene Xin moderate Alzheimer's disease. Alzheimers Res Ther 8:4CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pierrot N, Lhommel R, Quenon L, Hanseeuw B, Dricot L, Sindic C, Maloteaux JM, Octavea JN et al (2016) Targretin improves cognitive and biological markers in a patient with Alzheimer’s disease. J Alzheimers Dis 49(2):271–276CrossRefPubMedGoogle Scholar
  44. 44.
    Boehm-Cagan A, Michaelson DM (2014) Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J Neurosci 34(21):7293–7301CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sproul AA et al (2014) Characterization and molecular profiling of PSEN1 familial Alzheimer’s disease iPSC-derived neural progenitors. PLoS One 9(1):e84547CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Paquet D et al (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129CrossRefPubMedGoogle Scholar
  47. 47.
    Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk VI, Kaushik S, Klionsky DJ (2009) In search of an “autophagomometer”. Autophagy 5(5):585–589CrossRefPubMedGoogle Scholar
  48. 48.
    Malik AN et al (2011) Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun 412(1):1–7CrossRefPubMedGoogle Scholar
  49. 49.
    Sled VD, Vinogradov AD (1993) Kinetics of the mitochondrial NADH-ubiquinone oxidoreductase interaction with hexammineruthenium(III). Biochim Biophys Acta 1141(2–3):262–268CrossRefPubMedGoogle Scholar
  50. 50.
    Chiang MC, Nicol CJ, Cheng YC, Lin KH, Yen CH, Lin CH (2016) Rosiglitazone activation of PPARgamma-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress. Neurobiol Aging 40:181–190CrossRefPubMedGoogle Scholar
  51. 51.
    Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. NeuroMolecular Med 5(2):147–162CrossRefPubMedGoogle Scholar
  52. 52.
    Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H et al (2009) Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc Natl Acad Sci U S A 106(47):20057–20062CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stepanova A, Kahl A, Konrad C, ten V, Starkov AS, Galkin A (2017) Reverse electron transfer results in a loss of flavin from mitochondrial complex I: potential mechanism for brain ischemia reperfusion injury. J Cereb Blood Flow Metab 37(12):3649–3658CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kahl A, Stepanova A, Konrad C, Anderson C, Manfredi G, Zhou P, Iadecola C, Galkin A (2018) Critical role of flavin and glutathione in complex I-mediated bioenergetic failure in brain ischemia/reperfusion injury. Stroke 49(5):1223–1231CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Napolitano G, Ballabio A (2016) TFEB at a glance. J Cell Sci 129(13):2475–2481CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Puertollano R, Ferguson SM, Brugarolas J, Ballabio A (2018) The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J 37(11):e98804CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kim J et al (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee JH et al (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7):1146–1158CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ryan TA, Tumbarello DA (2018) Optineurin: a coordinator of membrane-associated cargo trafficking and autophagy. Front Immunol 9:1024CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Narendra DP, Youle RJ (2011) Targeting mitochondrial dysfunction: role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal 14(10):1929–1938CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13CrossRefPubMedGoogle Scholar
  62. 62.
    Loson OC et al (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24(5):659–667CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Palmer CS et al (2011) MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep 12(6):565–573CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci 29(28):9090–9103CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173(2):470–482CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Martin-Maestro P et al (2017) Slower dynamics and aged mitochondria in sporadic Alzheimer’s disease. Oxidative Med Cell Longev 2017:9302761CrossRefGoogle Scholar
  67. 67.
    Smirnova E, Griparic L, Shurland DL, van der Bliek A (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12(8):2245–2256CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Valente AJ, Maddalena LA, Robb EL, Moradi F, Stuart JA (2017) A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. Acta Histochem 119(3):315–326CrossRefPubMedGoogle Scholar
  69. 69.
    Xia D, Watanabe H, Wu B, Lee SH, Li Y, Tsvetkov E, Bolshakov VY, Shen J et al (2015) Presenilin-1 knockin mice reveal loss-of-function mechanism for familial Alzheimer’s disease. Neuron 85(5):967–981CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Saura CA, Choi SY, Beglopoulos V, Malkani S, Zhang D, Rao BSS, Chattarji S, Kelleher RJ III et al (2004) Loss of presenilin function causes impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Neuron 42(1):23–36CrossRefPubMedGoogle Scholar
  71. 71.
    Wines-Samuelson M, Schulte EC, Smith MJ, Aoki C, Liu X, Kelleher RJ, Shen J (2010) Characterization of age-dependent and progressive cortical neuronal degeneration in presenilin conditional mutant mice. PLoS One 5(4):e10195CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Veeraraghavalu K, Choi S, Zhang X, Sisodia SS (2013) Endogenous expression of FAD-linked PS1 impairs proliferation, neuronal differentiation and survival of adult hippocampal progenitors. Mol Neurodegener 8:41CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Sherrington R et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760CrossRefPubMedGoogle Scholar
  74. 74.
    Bruni AC et al (2010) Worldwide distribution of PSEN1 Met146Leu mutation: a large variability for a founder mutation. Neurology 74(10):798–806CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Page RM, Baumann K, Tomioka M, Pérez-Revuelta BI, Fukumori A, Jacobsen H, Flohr A, Luebbers T et al (2008) Generation of Abeta38 and Abeta42 is independently and differentially affected by familial Alzheimer disease-associated presenilin mutations and gamma-secretase modulation. J Biol Chem 283(2):677–683CrossRefPubMedGoogle Scholar
  76. 76.
    Kuusisto E, Suuronen T, Salminen A (2001) Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun 280(1):223–228CrossRefPubMedGoogle Scholar
  77. 77.
    Kuusisto E, Salminen A, Alafuzoff I (2002) Early accumulation of p62 in neurofibrillary tangles in Alzheimer's disease: possible role in tangle formation. Neuropathol Appl Neurobiol 28(3):228–237CrossRefPubMedGoogle Scholar
  78. 78.
    Fernandez-Mosquera L et al (2017) Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis. Sci Rep 7:45076CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Tanaka A (2010) Parkin-mediated selective mitochondrial autophagy, mitophagy: Parkin purges damaged organelles from the vital mitochondrial network. FEBS Lett 584(7):1386–1392CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE (2013) Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer's disease. J Alzheimers Dis 33(1):231–247CrossRefPubMedGoogle Scholar
  81. 81.
    Witte ME, Bol JGJM, Gerritsen WH, Valk P, Drukarch B, Horssen J, Wilhelmus MMM (2009) Parkinson's disease-associated parkin colocalizes with Alzheimer’s disease and multiple sclerosis brain lesions. Neurobiol Dis 36(3):445–452CrossRefPubMedGoogle Scholar
  82. 82.
    Wang L et al (2016) Synaptosomal mitochondrial dysfunction in 5xFAD mouse model of Alzheimer’s disease. PLoS One 11(3):e0150441CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fang EF et al (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22(3):401–412CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ye X et al (2015) Parkin-mediated mitophagy in mutant hAPP neurons and Alzheimer’s disease patient brains. Hum Mol Genet 24(10):2938–2951CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Garcia-Escudero V et al (2013) Deconstructing mitochondrial dysfunction in Alzheimer disease. Oxidative Med Cell Longev 2013:162152CrossRefGoogle Scholar
  86. 86.
    Wang X, Su B, Siedlak SL, Moreira PI, Fujioka H, Wang Y, Casadesus G, Zhu X (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 105(49):19318–19323CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9(7):505–518CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Veeraraghavalu K, Zhang C, Miller S, Hefendehl JK, Rajapaksha TW, Ulrich J, Jucker M, Holtzman DM et al (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340(6135):924–92fCrossRefPubMedGoogle Scholar
  89. 89.
    Ulrich JD, Burchett JM, Restivo JL, Schuler DR, Verghese PB, Mahan TE, Landreth GE, Castellano JM et al (2013) In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis. Mol Neurodegener 8(8):13CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Mandrekar-Colucci S, Landreth GE (2011) Nuclear receptors as therapeutic targets for Alzheimer’s disease. Expert Opin Ther Targets 15(9):1085–1097CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Tesseur I et al (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340(6135):924-eCrossRefPubMedGoogle Scholar
  92. 92.
    Fitz NF, Cronican AA, Lefterov I, Koldamova R (2013) Comment on “ApoE-directed therapeutics rapidly clear beta-amyloid and reverse deficits in AD mouse models”. Science 340(6135):924–92cCrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Huuskonen MT et al (2016) Bexarotene targets autophagy and is protective against thromboembolic stroke in aged mice with tauopathy. Sci Rep 6:33176CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Dickey AS, Sanchez DN, Arreola M, Sampat KR, Fan W, Arbez N, Akimov S, van Kanegan MJ et al (2017) PPARdelta activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Sci Transl Med 9(419):eaal2332CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE (2015) Activation of the nuclear receptor PPARdelta is neuroprotective in a transgenic mouse model of Alzheimer’s disease through inhibition of inflammation. J Neuroinflammation 12:7CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT (2012) PPARgamma/RXRalpha-induced and CD36-mediated microglial amyloid-beta phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 32(48):17321–17331CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Mandrekar-Colucci S, Karlo JC, Landreth GE (2012) Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci 32(30):10117–10128CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkUSA
  2. 2.Department of Pathology & Cell Biology and the Taub Institute for Research on Alzheimer’s Disease and the Aging BrainColumbia UniversityNew YorkUSA
  3. 3.The New York Stem Cell FoundationNew YorkUSA
  4. 4.Institute for Stroke and Dementia Research (ISD)University HospitalLMU MunichGermany

Personalised recommendations