Advertisement

Molecular Neurobiology

, Volume 56, Issue 12, pp 8513–8523 | Cite as

Coincident Pre- and Post-Synaptic Cortical Remodelling Disengages Episodic Memory from Its Original Context

  • Gisella Vetere
  • Antonella Borreca
  • Annabella Pignataro
  • Giulia Conforto
  • Michela Giustizieri
  • Silvia Marinelli
  • Martine Ammassari-TeuleEmail author
Article

Abstract

The view that the neocortex is remotely recruited for long-term episodic memory recall is challenged by data showing that an intense transcriptional and synaptic activity is detected in this region immediately after training. By measuring markers of synaptic activity at recent and remote time points from contextual fear conditioning (CFC), we could show that pre-synaptic changes are selectively detected 1 day post-training when the memory is anchored to the training context. Differently, pre- and post-synaptic changes are detected 14 days post-training when the memory generalizes to other contexts. Confirming that coincident pre- and post-synaptic remodelling mediates the disengagement of memory from its original context, DREADDs-mediated enhancement of cortical neuron activity during CFC training anticipates expression of a schematic memory and observation of bilateral synaptic remodelling. Together, our data show that the plastic properties of cortical synapses vary over time and specialise in relation to the quality of memory.

Keywords

Systems consolidation Episodic memory Neocortex Synaptic proteins Miniature EPSC Dendritic spines DREADDs 

Notes

Author contributions

These authors equally contributed to this work. GV, MAT and AP designed the experiments. GV and AB run behavioural, western blot/immunohistochemistry, and morphological experiments. SM and MG performed electrophysiological experiments. AP and GC carried out DREADDs experiments. MAT wrote the manuscript.

Funding Information

This work was financially supported by a grant (AGESPAN) from CNR-National Research Council of Italy.

References

  1. 1.
    Cohen NJ, Poldrack RA, Eichenbaum H (1997) Memory for items and memory for relations in the procedural/declarative memory framework. Memory 5(1–2):131–178CrossRefGoogle Scholar
  2. 2.
    Konkel A, Cohen NJ (2009) Relational memory and the hippocampus: representations and methods. Front Neurosci 3(2):166–174CrossRefGoogle Scholar
  3. 3.
    Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304(5672):881–883CrossRefGoogle Scholar
  4. 4.
    Restivo L, Vetere G, Bontempi B, Ammassari-Teule M (2009) The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci 29(25):8206–8214CrossRefGoogle Scholar
  5. 5.
    Aceti M, Vetere G, Novembre G, Restivo L, Ammassari-Teule M (2015) Progression of activity and structural changes in the anterior cingulate cortex during remote memory formation. Neurobiol Learn Mem 123:67–71CrossRefGoogle Scholar
  6. 6.
    Bero AW, Meng J, Cho S, Shen AH, Canter RG, Ericsson M, Tsai LH (2014) Early remodelling of the neocortex upon episodic memory encoding. Proc Natl Acad Sci U S A 111(32):11852–11857CrossRefGoogle Scholar
  7. 7.
    Winocur G, Moscovitch M, Sekeres M (2007) Memory consolidation or transformation: context manipulation and hippocampal representations of memory. Nat Neurosci 10(5):555–557CrossRefGoogle Scholar
  8. 8.
    Moscovitch M, Cabeza R, Winocur G, Nadel L (2016) Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu Rev Psychol 67:105–134CrossRefGoogle Scholar
  9. 9.
    Sekeres MJ, Winocur G, Moscovitch M (2018) The hippocampus and related neocortical structures in memory transformation. Neurosci Lett 680:39–53CrossRefGoogle Scholar
  10. 10.
    Hardt O, Nadel L (2018) Systems consolidation revisited, but not revised the promise and limits of optogenetics in the study of memory. Neurosci Lett 680:54–59CrossRefGoogle Scholar
  11. 11.
    Franklin and Paxinos (2001) The mouse brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  12. 12.
    Lopez AJ, Kramar E, Matheos DP, White AO, Kwapis J, Vogel-Ciernia A, Sakata K, Espinoza M et al (2016) Promotor-specific effects of DREADD modulation on hippocampal synaptic plasticity and memory formation. J Neurosci 36(12):3588–3599CrossRefGoogle Scholar
  13. 13.
    Lesburguères E, Gobbo OL, Alaux-Cantin S, Hambucken A, Trifilieff P, Bontempi B (2011) Early tagging of cortical networks is required for the formation of enduring associative memory. Science. 331(6019):924–928CrossRefGoogle Scholar
  14. 14.
    Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RG (2011) Schema-dependent gene activation and memory encoding in neocortex. Science. 333(6044):891–895CrossRefGoogle Scholar
  15. 15.
    O'Reilly RC, Bhattacharyya R, Howard MD, Ketz N (2014) Cogn Sci 38(6):1229–1248CrossRefGoogle Scholar
  16. 16.
    Varela C, Weiss S, Meyer R, Halassa M, Biedenkapp J, Wilson MA, Goosens KA, Bendor D (2016) Tracking the time-dependent role of the hippocampus in memory recal lusing DREADDs. PLoS One 11(5):e0154374CrossRefGoogle Scholar
  17. 17.
    Frankland PW, Bontempi B (2005) The organization of recent and remote memory. Nat Rev Neurosci 6(2):119–130CrossRefGoogle Scholar
  18. 18.
    Almeida-Filho DG, Queriroz CM, Riberiro S (2018) Memory corticalization triggered by REM-sleep: mechanisms of cellular and systems consolidation. Cell Mol Life Sci.  https://doi.org/10.1007/s00018-018-2886-9
  19. 19.
    Goshen I, Brodsky M, Prakash R, Wallace J, Gradinaru V, Ramakrishnan C, Deisseroth K (2011) Dynamics of retrieval strategies for remote memories. Cell 147(3):678–689CrossRefGoogle Scholar
  20. 20.
    Nonaka M, Doi T, Fujiyoshi Y, Takemoto-Kimura S, Bito H (2006) Essential contribution of the ligand-binding beta B/beta C loop of PDZ1 and PDZ2 in the regulation of postsynaptic clustering, scaffolding, and localization of postsynaptic density-95. J Neurosci 26(3):763–774CrossRefGoogle Scholar
  21. 21.
    Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science. 298(5594):776–780CrossRefGoogle Scholar
  22. 22.
    Yuste R (2011) Dendritic spines and distributed circuits. Neuron. 71(5):772–781CrossRefGoogle Scholar
  23. 23.
    Vetere G, Restivo L, Cole CJ, Ross PJ, Ammassari-Teule M, Josselyn SA, Frankland PW (2011) Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. Proc Natl Acad Sci U S A 108(20):8456–8460CrossRefGoogle Scholar
  24. 24.
    Radulovic J, Kammermeier J, Spiess J (1998) Generalization of fear responses in C57BL/6N mice subjected to one-trial foreground contextual fear conditioning. Behav Brain Res 95(2):179–189CrossRefGoogle Scholar
  25. 25.
    Wiltgen BJ, Silva AJ (2007) Memory for context becomes less specific with time. Learn Mem 14(4):313–317CrossRefGoogle Scholar
  26. 26.
    Huckleberry KA, Ferguson LB, Drew MR (2016) Behavioral mechanisms of context fear generalization in mice. Learn Mem 23(12):703–709CrossRefGoogle Scholar
  27. 27.
    Moscovitch M, Rosenbaum RS, Gilboa A, Addis DR, Westmacott R, Grady C, McAndrews MP, Levine B et al (2005) Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207(1):35–66CrossRefGoogle Scholar
  28. 28.
    Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S (2017) Engrams and circuits crucial for systems consolidation of a memory. Science 356(6333):73–78CrossRefGoogle Scholar
  29. 29.
    Morrissey MD, Insel N, Takehara-Nishiuchi K (2017) Generalizable knowledge outweighs incidental details in prefrontal ensemble code over time. Elife 6Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Experimental Neuroscience, Laboratory of PsychobiologyFondazione Santa LuciaRomeItaly
  2. 2.Laboratoire Plasticité du CerveauESPCI-Ecole Supérieure de Physique et Chimie IndustrielleParisFrance
  3. 3.Consiglio Nazionale delle RicercheIstituto di Biologia Cellulare e NeurobiologiaRomeItaly
  4. 4.Consiglio Nazionale delle RicercheIstituto di NeuroscienzeMilanItaly
  5. 5.European Brain Research InstituteRomeItaly

Personalised recommendations