Molecular Neurobiology

, Volume 56, Issue 12, pp 8277–8295 | Cite as

Altered Gene Expression of Thyroid Hormone Transporters and Deiodinases in iPS MeCP2-Knockout Cells-Derived Neurons

  • Janaina Sena de SouzaEmail author
  • Divino Romão Ferreira
  • Roberto Herai
  • Cassiano Carromeu
  • Laila Brito Torres
  • Bruno Henrique Silva Araujo
  • Fernanda Cugola
  • Rui M. B. Maciel
  • Alysson Renato Muotri
  • Gisele Giannocco


MeCP2 is an X-linked gene; its mutation causes Rett Syndrome (RTT), a severe neurodevelopmental disability that affects mainly girls. Acting as a transcription factor, the MeCP2 protein is able to regulate several hormone-related genes, such as the thyroid hormones (TH), which are known to play an important role in the development of the central nervous system (CNS). Although only a few studies have associated RTT and TH, TH deficit can lead to neurological deregulation by triggering functional deficiencies during adulthood. Here, we used human-induced pluripotent stem cell (iPSC) to generate MeCP2-knockout neuronal progenitor cells and adult neurons. Using this cellular model, we then investigated the expression of genes associated with TH homeostasis, such as the TH transporters (LAT1, LAT2, MCT8, MCT10, and OATP4A1) and deiodinases (DIO1, 2, and 3). Then, we treated the neural cells with THs and analyzed the expression of several genes related to neurodevelopment and functional maintenance. Our results showed that several TH-related genes, such as deiodinases, are altered in RTT samples when compared to WT cells. Moreover, the treatment of the neural cells with THs increased the amount of MAP2 and synapsin-1 expression in RTT cells. Our work provided evidences that TH homeostasis is compromised in RTT-derived neural cells, which could be an important factor to contribute to the imbalance in the neurodevelopmental phenotype presented in this syndrome and can lead us to better understand other neurodevelopmental diseases.


MeCP2 gene mutation Rett syndrome Thyroid hormones Gene expression Transporter Deiodinase 



This work was supported by a NARSAD Independent Investigator Grant to A.R.M., and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brasilia, Brazil) 18952-12-7 and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) 2017/07053-3 to J.S.S., and from Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil) 2014/08049-1 to B.H.S.A.

Compliance with Ethical Standards

This study is part of a reviewed and approved research by the UCSD Human Research Protections Program and it is in accordance with requirements of the Code of Federal Regulations on the Protection of Human Subjects (reference number is 090801ZF).

Conflict of Interest

Dr. Muotri is a co-founder and has equity interest in TISMOO, a company dedicated to genetic analysis focusing on therapeutic applications customized for autism spectrum disorder and other neurological disorders with genetic origins. The terms of this arrangement have been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies.

Supplementary material

12035_2019_1645_MOESM1_ESM.docx (95 kb)
ESM 1 (DOCX 94 kb)


  1. 1.
    Hagberg B, Alcardi J, Dias K, Ramos O (1983) A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol 14(4):471–479CrossRefPubMedGoogle Scholar
  2. 2.
    Stagi S, Cavalli L, Congiu L, Scusa MF, Ferlini A, Bigoni S, Benincasa A, Rossi B (2015) Thyroid function in Rett syndrome. Horm Res Paediatr 83:118–125CrossRefPubMedGoogle Scholar
  3. 3.
    Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Hy Z (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188CrossRefPubMedGoogle Scholar
  4. 4.
    Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cell. Cell 143:527–539CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    de Souza JS, Carromeu C, Torres LB, Araujo BHS, Cugola FR, Maciel RMB, Muotri AR, Giannocco G (2017) IGF1 neuronal response in the absence of MECP2 is dependent on TRalpha3. Hum Mol Genet 26(2):270–281PubMedGoogle Scholar
  6. 6.
    Delong GR, Stanbury JB, Fierro-Benitez R (1985) Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol 27:317–324CrossRefPubMedGoogle Scholar
  7. 7.
    Horn S, Heuer H (2010) Thyroid hormone action during brain development: more questions than answers. Mol Cell Endocrinol 315:19–26CrossRefPubMedGoogle Scholar
  8. 8.
    Chatonnet F, Picou F, Fauquier T, Flamant F (2011) Thyroid hormone action in cerebellum and cerebral cortex development. J Thyroid Res 2011:1–8CrossRefGoogle Scholar
  9. 9.
    Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, Miyazaki W, Shimokawa N, Koibuchi N (2011) Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers. Environ Health Perspect 119(2):168–175CrossRefPubMedGoogle Scholar
  10. 10.
    Ibhazehiebo K, Iwasaki T, Okano-Uchida T, Shimokawa N, Ishizaki Y, Koibuchi N (2011) Suppression of thyroid hormone receptor-mediated transcription and disruption of thyroid hormone-induce cerebellar morphogenesis by the polybrominated biphenyl mixture, BP-6. Neurotoxicology 32:400–409CrossRefPubMedGoogle Scholar
  11. 11.
    Patel J, Landers K, Li H, Mortimer RH, Richard K (2011) Thyroid hormones and fetal neurological development. J Endocrinol 209:1–8CrossRefPubMedGoogle Scholar
  12. 12.
    de Souza JS, da Conceição RR, Oliveira KC, Maciel RMB, Giannocco G (2016) The hypothyroid brain. Receptors Clin Investig 3(4).
  13. 13.
    Berbel P, Obregon MJ, Bernal J, Escobar Del Rey F, De Escobar GM (2007) Iodine supplementation during pregnancy: a public health challenge. Trends Endocrinol Metab 18:338–343CrossRefPubMedGoogle Scholar
  14. 14.
    Bath SC (2019) The effect of iodine deficiency during pregnancy on child development. Proc Nutr Soc 15:1–11Google Scholar
  15. 15.
    De Escobar GM, Obregón MJ, Del Rey FE (2004) Maternal thyroid hormones early in pregnancy and fetal brain development. Best Pract Res Clin Endocrinol Metab 18(2):225–248CrossRefPubMedGoogle Scholar
  16. 16.
    Andersen SL (2019) Frequency and outcomes of maternal thyroid function abnormalities in early pregnancy. Scand J Clin Lab Invest 8:1–9Google Scholar
  17. 17.
    Gilbert ME, Rovet J, Chen Z, Koibuchi N (2012) Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 33(4):842–852CrossRefPubMedGoogle Scholar
  18. 18.
    Ahmed OM, El-Gareib AW, El-Bakry AM, Abd El-Tawab SM, Ahmed RG (2008) Thyroid hormones states and brain development interactions. Int J Dev Neurosci 26:147–209CrossRefPubMedGoogle Scholar
  19. 19.
    Manzano J, Bernal J, Morte B (2007) Influence of thyroid hormones on maturation of rat cerebellar astrocytes. Int J Dev Neurosci 25(3):171–179CrossRefPubMedGoogle Scholar
  20. 20.
    Mendes-de-Aguiar CB, Alchini R, Decker H, Alvarez-Silva M, Tasca CI, Trentin AG (2008) Thyroid hormone increases astrocytic glutamate uptake and protects astrocytes and neurons against glutamate toxicity. J Neurosci Res 86(14):3117–3125CrossRefPubMedGoogle Scholar
  21. 21.
    Schroeder AC, Privalsky ML (2014) Thyroid hormones, T3 and T4, in the brain. Front Endocrinol 5:1–6CrossRefGoogle Scholar
  22. 22.
    Friesema EC, Jansen J, Milici C, Visser TJ (2005) Thyroid hormone transporters. Vitam Horm 70:137–167CrossRefPubMedGoogle Scholar
  23. 23.
    Chan SY, Martín-Santos A, Loubière LS, González AM, Stieger B, Logan A, McCabe CJ, Frnaklyn JA et al (2011) The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation. J Physiol 589(11):2827–2845CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bernal J (2005) The significance of thyroid hormone transporters in the brain. Endocrinology 146(4):1698–1700CrossRefPubMedGoogle Scholar
  25. 25.
    Heuer H (2011) Hear, hear! Thyroid hormone transporters in cochlear development. Endocrinology 152(12):4478–4480CrossRefPubMedGoogle Scholar
  26. 26.
    Brent GA, Moore DD, Larsen PR (1991) Thyroid hormone regulation of gene expression. Annu Rev Physiol 53:17–35CrossRefPubMedGoogle Scholar
  27. 27.
    Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193PubMedGoogle Scholar
  28. 28.
    Harvey CB, Williams G (2002) Mechanism of thyroid hormone action. Thyroid 12(6):441–446CrossRefPubMedGoogle Scholar
  29. 29.
    Bernal J (2007) Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3:249–259CrossRefPubMedGoogle Scholar
  30. 30.
    Nageshappa S, Carromeu C, Trujillo CA, Mesci P, Espuny-Camacho I, Pasciuto E, Vanderhaeghen P, Verfaillie CM et al (2016) Altered neural network and rescue in human MECP2 duplication model. Mol Psychiatry 21(2):178–188CrossRefPubMedGoogle Scholar
  31. 31.
    Freitas BCG, Gereben B, Castillo M, Kalló I, Zeöld A, Egri P, Liposits Z, Zavacki AM et al (2010) Paracrine signaling by glial cell-derived triiodothyronine activates neuronal gene expression in the rodent brain and human cells. J Clin Invest 120(6):2206–2217CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dussault AA, Pouliot M (2006) Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol Proced Online 8(1):1–10CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD et al (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39(Database issue):D685–D690CrossRefPubMedGoogle Scholar
  34. 34.
    Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452CrossRefPubMedGoogle Scholar
  35. 35.
    Hosseinpour M, Mashayekhi F, Bidabadi E, Salehi Z (2017) Neuropilin-2 rs849563 gene variations and susceptibility to autism in Iranian population: a case-control study. Metab Brain Dis 32(5):1471–1474CrossRefPubMedGoogle Scholar
  36. 36.
    Wall DP, Esteban FJ, Deluca TF, Huyck M, Monaghan T, Velez de Mendizabal N, Goñí J, Kohane IS (2009) Comparative analysis of neurological disorders focuses genome-wide search for autism genes. Genomics 93(2):120–129CrossRefPubMedGoogle Scholar
  37. 37.
    Kapoor R, Desouza LA, Nanavaty IN, Kernie SG, Vaidya VA (2012) Thyroid hormone accelerates the differentiation of adult hippocampal progenitors. J Neuroendocrinol 24:1259–1271CrossRefPubMedGoogle Scholar
  38. 38.
    Braun D, Kinne A, Bräuer AU, Sapin R, Klein MO, Köhrle J, Wirth EK, Schweizer U (2011) Developmental and cell type-specific expression of thyroid hormone transporters in the mouse brain and primary brain cells. Glia 59:463–471CrossRefPubMedGoogle Scholar
  39. 39.
    Groeneweq S, Visser WE, Visser TJ (2017) Disorder of thyroid hormone transport into tissues. Best Pract Res Clin Endocrinol Metab 31(2):241–253CrossRefGoogle Scholar
  40. 40.
    Dentice M, Luongo C, Huang S, Ambrosio R, Elefante A, Mirebeau-Prunier D, Zavacki AM, Fenzi G et al (2007) Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad U S A 104(36):14466–14471CrossRefGoogle Scholar
  41. 41.
    Crantz FR, Silva JE, Larsen PR (1982) An analysis of the sources and quantity of 3,5,3′-triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110(2):367–375CrossRefPubMedGoogle Scholar
  42. 42.
    Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, Clark AS, St Germain DL (2007) Thyroid hormone homeostasis and action in type 2 deiodinase-deficient rodent brain during development. Endocrinology 148(7):3080–3088CrossRefPubMedGoogle Scholar
  43. 43.
    Gil-Ibáñez P, Bernal J, Morte B (2014) Thyroid hormone regulation of gene expression in primary cerebrocortical cells: role of thyroid hormone receptor subtypes and interactions with retinoic acid and glucocorticoids. PLoS One 9(3):e91692CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Min H, Dong J, Wang Y, Wang Y, Teng W, Xi Q, Chen J (2016) Maternal hypothyroxinemia-induced neurodevelopmental impairments in the progeny. Mol Neurobiol 53(3):1613–1624CrossRefPubMedGoogle Scholar
  45. 45.
    Boukhtouche F, Brugg B, Wehrlé R, Bois-Joyeux B, Danan JL, Dusart I, Mariani J (2010) Induction of early Purkinje cell dendritic differentiation by thyroid hormone requires RORa. Neural Dev 5:18CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fauquier T, Romero E, Picou F, Chatonnet F, Nguyen XN, Quignodon L, Flamant F (2011) Severe impairment of cerebellum development in mice expressing a dominant-negative mutation inactivating thyroid hormone receptor alpha1 isoform. Dev Biol 356(2):350–358CrossRefPubMedGoogle Scholar
  47. 47.
    Grijota-Martínez C, Samarut E, Scanian TS, Morte B, Bernal J (2011) In vivo activity of the thyroid hormone receptor beta- and α-selective agonists GC-24 and CO23 on rat liver, heart and brain. Endocrinology 152(3):1136–1142CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Raimondi C, Ruhrberg C (2013) Neuropilin signaling in vessels, neurons and tumours. Semin Cell Dev Biol 24(3):172–178CrossRefPubMedGoogle Scholar
  49. 49.
    Jang DH, Chae H, Kim M (2015) Autistic and Rett-like features associated with 2q33.3-q34 interstitial deletion. Am J Med Genet A 167A(9):2213–2218CrossRefPubMedGoogle Scholar
  50. 50.
    Galceran J, Miyashita-Lin EM, Devaney E, Rubinstein JL, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127:469–482PubMedGoogle Scholar
  51. 51.
    Kuwahara A, Sakai H, Xu Y, Itoh Y, Hirabayashi Y, Gotoh Y (2014) Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development. PLoS One 9(5):e94408CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Baqui M, Botero D, Gereben B, Curcico C, Harney JW, Salvatore D, Sorimachi K, Larsen PR et al (2003) Human type 3 iodothyronine selenodeiodinase is located in the plasma membrane and undergoes rapid internalization to endosomes. J Biol Chem 278(2):1206–1211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Janaina Sena de Souza
    • 1
    • 2
    Email author
  • Divino Romão Ferreira
    • 1
  • Roberto Herai
    • 3
  • Cassiano Carromeu
    • 2
  • Laila Brito Torres
    • 4
    • 5
  • Bruno Henrique Silva Araujo
    • 6
  • Fernanda Cugola
    • 2
  • Rui M. B. Maciel
    • 1
  • Alysson Renato Muotri
    • 2
  • Gisele Giannocco
    • 1
    • 7
  1. 1.Departamento de Medicina, Laboratório de Endocrinologia e Medicina TranslacionalUniversidade Federal de São Paulo, UNIFESP/EPMSão PauloBrazil
  2. 2.Department of Pediatrics, School of MedicineUniversity of California, San DiegoLa JollaUSA
  3. 3.Graduate Program in Health Sciences, School of MedicinePontifícia Universidade Católica do Paraná (PUCPR/PPGCS)CuritibaBrazil
  4. 4.Faculdade São Leopoldo Mandic, Área de Fisiologia, FarmacologiaInstituto São Leopoldo MandicCampinasBrazil
  5. 5.Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of BiociencesUniversidade de São Paulo (USP)São PauloBrazil
  6. 6.Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
  7. 7.Departamento de Ciências BiológicasUniversidade Federal de São Paulo, UNIFESPDiademaBrazil

Personalised recommendations