Hippocampus and Prefrontal Cortex Modulation of Contextual Fear Memory Is Dissociated by Inhibiting De Novo Transcription During Late Consolidation

  • Luciana M. Pereira
  • Caio M. de Castro
  • Lorena T. L. Guerra
  • Thaís M. Queiroz
  • João T. Marques
  • Grace Schenatto PereiraEmail author


To uncover the factors that dictate the persistence of a memory, it is critical to determine the molecular basis of consolidation. Here, we submitted male adult C57/BL6 mice to contextual fear conditioning using 1US (US: foot-shock, 0.7 mA, 2 s) or 5US, to generate recent (24 to 48 h) and remote (30 days) memories, respectively. To access the functional role of de novo transcription, we injected actinomycin D (ActD: 2.5 ng/side) directly into the dorsal hippocampus (HIP) or dorsomedial prefrontal cortex (dmPFC), 0 (early consolidation) or 12 h (late consolidation) after training. Our results showed that de novo transcription at 0 h was required for recent and remote memories. However, 12 h was a critical time point to memory persistence. In the dHIP, de novo transcription at 12 h post-training differentiated the recent memory from the remote. In the dmPFC, ActD affected memory formation depending on the training intensity (1 or 5US). Specifically, freezing was amplified after 5US conditioning. Furthermore, inhibiting de novo transcription at 12 h post-training in the dmPFC rapidly increased c-Fos expression in the amygdala. Altogether, our results indicate that contextual fear memory duration is particularly sensitive to de novo transcription in the dHIP and dmPFC, at a specific time point of late consolidation.


Contextual fear memory Late consolidation Dorsal hippocampus Dorsomedial prefrontal cortex De novo transcription 



We thank the members of the Núcleo de Neurociências for helpful discussion on conceiving this work. We also thank Prof. Kasia Radwanska and Dr. Abby Basya Finkelstein for helpful comments and correction of English on this manuscript.

Funding Information

This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (PVE 401273/2014), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Procad 88881.068460/2014-01), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (APQ01396-15).


  1. 1.
    Müller GE, Pilzecker A (1900) Experimentelle Beiträge zur Lehre vom Gedächtnis. Z Psychol Ergänzungsband 1:1–300Google Scholar
  2. 2.
    Tonegawa S, Morrissey MD, Kitamura T (2018) The role of engram cells in the systems consolidation of memory. Nat Rev Neurosci 19:485–498CrossRefGoogle Scholar
  3. 3.
    Lechner HA, Squire LR, Byrne JH (1999) 100 years of consolidation—remembering Muller and Pilzecker. Learn Mem 6(2):77–87PubMedGoogle Scholar
  4. 4.
    McGaugh JL (1999) The perseveration-consolidation hypothesis: Mueller and Pilzecker, 1900. Brain Res Bull 50(5–6):445–446CrossRefGoogle Scholar
  5. 5.
    Bailey CH, Kandel ER, Harris KM (2015) Structural components of synaptic plasticity and memory consolidation. Cold Spring Harb Perspect Biol 7(7):a021758CrossRefGoogle Scholar
  6. 6.
    Bailey CH, Bartsch D, Kandel ER (1996) Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A 93(24):13445–13452CrossRefGoogle Scholar
  7. 7.
    Dudai Y (1996) Consolidation: fragility on the road to the engram. Neuron 17(3):367–370CrossRefGoogle Scholar
  8. 8.
    Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55(1):51–86. CrossRefPubMedGoogle Scholar
  9. 9.
    Frankland PW, Ding HK, Takahashi E, Suzuki A, Kida S, Silva AJ (2006) Stability of recent and remote contextual fear memory. Learn Mem 13(4):451–457CrossRefGoogle Scholar
  10. 10.
    Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119–130CrossRefGoogle Scholar
  11. 11.
    Korte M, Schmitz D (2016) Cellular and system biology of memory: timing, molecules, and beyond. Physiol Rev 96(2):647–693CrossRefGoogle Scholar
  12. 12.
    Bekinschtein P, Katche C, Slipczuk L, Gonzalez C, Dorman G, Cammarota M, Izquierdo I, Medina JH (2010) Persistence of long-term memory storage: new insights into its molecular signatures in the hippocampus and related structures. Neurotox Res 18(3–4):377–385CrossRefGoogle Scholar
  13. 13.
    Katche C, Bekinschtein P, Slipczuk L, Goldin A, Izquierdo IA, Cammarota M, Medina JH (2010) Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proc Natl Acad Sci U S A 107(1):349–354CrossRefGoogle Scholar
  14. 14.
    Rossato JI, Bevilaqua LR, Izquierdo I, Medina JH, Cammarota M (2009) Dopamine controls persistence of long-term memory storage. Science 325(5943):1017–1020. CrossRefPubMedGoogle Scholar
  15. 15.
    Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH (2008) BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A 105(7):2711–2716CrossRefGoogle Scholar
  16. 16.
    Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH (2007) Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. Neuron 53(2):261–277CrossRefGoogle Scholar
  17. 17.
    Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER (1998) Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem 5(4–5):365–374PubMedPubMedCentralGoogle Scholar
  18. 18.
    Guarraci FA, Frohardt RJ, Falls WA, Kapp BS (2000) The effects of intra-amygdaloid infusions of a D2 dopamine receptor antagonist on Pavlovian fear conditioning. Behav Neurosci 114(3):647–651CrossRefGoogle Scholar
  19. 19.
    Frohardt RJ, Guarraci FA, Young SL (1999) Intrahippocampal infusions of a metabotropic glutamate receptor antagonist block the memory of context-specific but not tone-specific conditioned fear. Behav Neurosci 113(1):222–227CrossRefGoogle Scholar
  20. 20.
    Gilmartin MR, Helmstetter FJ (2010) Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex. Learn Mem 17(6):289–296CrossRefGoogle Scholar
  21. 21.
    Parsons RG, Gafford GM, Baruch DE, Riedner BA, Helmstetter FJ (2006) Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. Eur J Neurosci 23(7):1853–1859CrossRefGoogle Scholar
  22. 22.
    Helmstetter FJ, Bellgowan PS (1994) Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav Neurosci 108(5):1005–1009CrossRefGoogle Scholar
  23. 23.
    Poulos AM, Mehta N, Lu B, Amir D, Livingston B, Santarelli A, Zhuravka I, Fanselow MS (2016) Conditioning- and time-dependent increases in context fear and generalization. Learn Mem 23(7):379–385CrossRefGoogle Scholar
  24. 24.
    Zelikowsky M, Hersman S, Chawla MK, Barnes CA, Fanselow MS (2014) Neuronal ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of contextual fear. J Neurosci 34(25):8462–8466CrossRefGoogle Scholar
  25. 25.
    Casagrande MA, Haubrich J, Pedraza LK, Popik B, Quillfeldt JA, de Oliveira AL (2018) Synaptic consolidation as a temporally variable process: Uncovering the parameters modulating its time-course. Neurobiol Learn Mem 150:42–47CrossRefGoogle Scholar
  26. 26.
    Alvares Lde O, Einarsson EO, Santana F, Crestani AP, Haubrich J, Cassini LF, Nader K, Quillfeldt JA (2012) Periodically reactivated context memory retains its precision and dependence on the hippocampus. Hippocampus 22(5):1092–1095CrossRefGoogle Scholar
  27. 27.
    Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE (1999) Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem 6(2):97–110PubMedPubMedCentralGoogle Scholar
  28. 28.
    Stiedl O, Birkenfeld K, Palve M, Spiess J (2000) Impairment of conditioned contextual fear of C57BL/6J mice by intracerebral injections of the NMDA receptor antagonist APV. Behav Brain Res 116(2):157–168CrossRefGoogle Scholar
  29. 29.
    Schulz B, Fendt M, Gasparini F, Lingenhohl K, Kuhn R, Koch M (2001) The metabotropic glutamate receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) blocks fear conditioning in rats. Neuropharmacology 41(1):1–7CrossRefGoogle Scholar
  30. 30.
    Silva AJ, Zhou Y, Rogerson T, Shobe J, Balaji J (2009) Molecular and cellular approaches to memory allocation in neural circuits. Science 326(5951):391–395. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Huff NC, Frank M, Wright-Hardesty K, Sprunger D, Matus-Amat P, Higgins E, Rudy JW (2006) Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. J Neurosci 26(5):1616–1623CrossRefGoogle Scholar
  32. 32.
    Karunakaran S, Chowdhury A, Donato F, Quairiaux C, Michel CM, Caroni P (2016) PV plasticity sustained through D1/5 dopamine signaling required for long-term memory consolidation. Nat Neurosci 19(3):454–464CrossRefGoogle Scholar
  33. 33.
    Nakayama D, Iwata H, Teshirogi C, Ikegaya Y, Matsuki N, Nomura H (2015) Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci 35(2):819–830CrossRefGoogle Scholar
  34. 34.
    Nakayama D, Hashikawa-Yamasaki Y, Ikegaya Y, Matsuki N, Nomura H (2016) Late Arc/Arg3.1 expression in the basolateral amygdala is essential for persistence of newly-acquired and reactivated contextual fear memories. Sci Rep 6:21007CrossRefGoogle Scholar
  35. 35.
    Nakashiba T, Buhl DL, McHugh TJ, Tonegawa S (2009) Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62(6):781–787CrossRefGoogle Scholar
  36. 36.
    Kitamura T, Ogawa SK, Roy DS, Okuyama T, Morrissey MD, Smith LM, Redondo RL, Tonegawa S (2017) Engrams and circuits crucial for systems consolidation of a memory. Science 356(6333):73–78CrossRefGoogle Scholar
  37. 37.
    Pereira LM, Bastos CP, de Souza JM, Ribeiro FM, Pereira GS (2014) Estradiol enhances object recognition memory in Swiss female mice by activating hippocampal estrogen receptor alpha. Neurobiol Learn Mem 114:1–9CrossRefGoogle Scholar
  38. 38.
    Koba M, Konopa J (2005) Actinomycin D and its mechanisms of action. Postepy Hig Med Dosw (Online) 59:290–298Google Scholar
  39. 39.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408CrossRefGoogle Scholar
  40. 40.
    Wiltgen BJ, Silva AJ (2007) Memory for context becomes less specific with time. Learn Mem 14(4):313–317CrossRefGoogle Scholar
  41. 41.
    Frankland PW, Bontempi B, Talton LE, Kaczmarek L, Silva AJ (2004) The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304(5672):881–883CrossRefGoogle Scholar
  42. 42.
    Abate G, Colazingari S, Accoto A, Conversi D, Bevilacqua A (2018) Dendritic spine density and EphrinB2 levels of hippocampal and anterior cingulate cortex neurons increase sequentially during formation of recent and remote fear memory in the mouse. Behav Brain Res 344:120–131CrossRefGoogle Scholar
  43. 43.
    Quinn JJ, Ma QD, Tinsley MR, Koch C, Fanselow MS (2008) Inverse temporal contributions of the dorsal hippocampus and medial prefrontal cortex to the expression of long-term fear memories. Learn Mem 15(5):368–372CrossRefGoogle Scholar
  44. 44.
    Choi DC, Maguschak KA, Ye K, Jang SW, Myers KM, Ressler KJ (2010) Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc Natl Acad Sci U S A 107(6):2675–2680CrossRefGoogle Scholar
  45. 45.
    Alvarez RP, Biggs A, Chen G, Pine DS, Grillon C (2008) Contextual fear conditioning in humans: cortical-hippocampal and amygdala contributions. J Neurosci 28(24):6211–6219CrossRefGoogle Scholar
  46. 46.
    Morgan MA, LeDoux JE (1995) Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci 109(4):681–688CrossRefGoogle Scholar
  47. 47.
    Baldi E, Lorenzini CA, Bucherelli C (2004) Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat. Neurobiol Learn Mem 81(3):162–166CrossRefGoogle Scholar
  48. 48.
    Fanselow MS (1980) Conditioned and unconditional components of post-shock freezing. Pavlov J Biol Sci 15(4):177–182PubMedGoogle Scholar
  49. 49.
    Gonzalez MC, Kramar CP, Tomaiuolo M, Katche C, Weisstaub N, Cammarota M, Medina JH (2014) Medial prefrontal cortex dopamine controls the persistent storage of aversive memories. Front Behav Neurosci 8:408CrossRefGoogle Scholar
  50. 50.
    Radulovic J, Kammermeier J, Spiess J (1998) Generalization of fear responses in C57BL/6N mice subjected to one-trial foreground contextual fear conditioning. Behav Brain Res 95(2):179–189CrossRefGoogle Scholar
  51. 51.
    Balogh SA, Radcliffe RA, Logue SF, Wehner JM (2002) Contextual and cued fear conditioning in C57BL/6J and DBA/2J mice: context discrimination and the effects of retention interval. Behav Neurosci 116(6):947–957CrossRefGoogle Scholar
  52. 52.
    Barrientos RM, O'Reilly RC, Rudy JW (2002) Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behav Brain Res 134(1–2):299–306CrossRefGoogle Scholar
  53. 53.
    Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13(6):728–733CrossRefGoogle Scholar
  54. 54.
    Corcoran KA, Quirk GJ (2007) Activity in prelimbic cortex is necessary for the expression of learned, but not innate, fears. J Neurosci 27(4):840–844CrossRefGoogle Scholar
  55. 55.
    Rizzo V, Touzani K, Raveendra BL, Swarnkar S, Lora J, Kadakkuzha BM, Liu XA, Zhang C et al (2017) Encoding of contextual fear memory requires de novo proteins in the prelimbic cortex. Biol Psychiatry Cogn Neurosci Neuroimaging 2(2):158–169CrossRefGoogle Scholar
  56. 56.
    Einarsson EO, Nader K (2012) Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learn Mem 19(10):449–452CrossRefGoogle Scholar
  57. 57.
    Marek R, Strobel C, Bredy TW, Sah P (2013) The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol 591(10):2381–2391CrossRefGoogle Scholar
  58. 58.
    Ressler RL, Maren S (2018) Synaptic encoding of fear memories in the amygdala. Curr Opin Neurobiol 54:54–59CrossRefGoogle Scholar
  59. 59.
    Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J et al (2014) Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505(7481):92–96CrossRefGoogle Scholar
  60. 60.
    Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K et al (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19(4):605–612CrossRefGoogle Scholar
  61. 61.
    Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535(7612):420–424CrossRefGoogle Scholar
  62. 62.
    Cheriyan J, Kaushik MK, Ferreira AN, Sheets PL (2016) Specific targeting of the basolateral amygdala to projectionally defined pyramidal neurons in prelimbic and infralimbic cortex. eNeuro 3(2)Google Scholar
  63. 63.
    Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ (2018) Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. Elife 7Google Scholar
  64. 64.
    Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW et al (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276CrossRefGoogle Scholar
  65. 65.
    Kim EJ, Horovitz O, Pellman BA, Tan LM, Li Q, Richter-Levin G, Kim JJ (2013) Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats. Proc Natl Acad Sci U S A 110(36):14795–14800. CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Katche C, Bekinschtein P, Slipczuk L, Goldin A, Izquierdo IA, Cammarota M, Medina JH (2009) Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proc Natl Acad Sci 107(1):349–354CrossRefGoogle Scholar
  67. 67.
    Dragoi G, Buzsaki G (2006) Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50(1):145–157CrossRefGoogle Scholar
  68. 68.
    Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14(2):147–153CrossRefGoogle Scholar
  69. 69.
    Davidson TJ, Kloosterman F, Wilson MA (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507CrossRefGoogle Scholar
  70. 70.
    Karlsson MP, Frank LM (2009) Awake replay of remote experiences in the hippocampus. Nat Neurosci 12(7):913–918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Departamento de Bioquímica e Imunologia, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations