Conditional Haploinsufficiency of β-Catenin Aggravates Neuronal Damage in a Paraquat-Based Mouse Model of Parkinson Disease

  • Fanpeng Zhao
  • Sandra L. Siedlak
  • Sandy L. Torres
  • Qian Xu
  • Beisha TangEmail author
  • Xiongwei ZhuEmail author


The canonical Wnt pathway is critical for both the development and adulthood survival and homeostatic maintenance of the midbrain dopaminergic (DA) neurons. Expanding evidence has demonstrated that genetic factors associated with familial Parkinson disease (PD) deregulate this important pathway, suggesting that a disturbed canonical Wnt pathway is likely involved in PD pathogenesis; yet, the specific role of this pathway in sporadic PD remains unclear. In this study, we aimed to determine the effects of specific inhibition of the canonical pathway by hemizygous knockout of β-catenin, the obligatory component of the canonical Wnt pathway, on paraquat (PQ)-induced DA neuronal degeneration in the substantia nigra in vivo. We found that while hemizygous conditional knockout of β-catenin in DA neurons did not cause any significant TH+ neuronal loss in the substantia nigra at basal level, it triggered elevated oxidative stress at basal level and further enhanced PQ-induced oxidative damage and loss of TH+ neurons in the substantia nigra and axonal termini in the striatum that manifested as exacerbated motor deficits. These data support the notion that reduced Wnt/β-catenin signaling in sporadic PD likely contributes to DA neuronal loss through an enhanced oxidative stress-response pathway.


Parkinson disease Canonical Wnt pathway β-Catenin Oxidative stress Neurodegeneration 





Dopamine transporter




c-Jun N-terminal kinases








Parkinson disease


Reactive oxygen species


Substantia nigra pars compacta


Tyrosine hydroxylase




Ventral tegmental


Author’s Contributions

FZ designed/carried out experiments, collected data and wrote the manuscript, SLS, SLR QX, BT contributed to interpretation of results and provided feedback on the manuscript. BT and XZ conceived the project. XZ directed the project, interpret results and wrote the manuscript. All authors had final approval of the submitted version.

Funding Information

This research was partly supported by the National Institute of Health [grant number NS083498 (to X. Zhu)], the Dr. Robert M. Kohrman Memorial Fund (to X. Zhu), the National Natural Science Foundation of China [No. 81430023 (to B. Tang)], the National Key Plan for Scientific Research and Development of China [No. 2016YFC1306000 (to B. Tang)], and the NSFC-NIH joint program [No. 81361120404 (to B. Tang)].

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jankovic J (2008) Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376. CrossRefPubMedGoogle Scholar
  2. 2.
    Schapira AH (1997) Pathogenesis of Parkinson’s disease. Baillieres Clin Neurol 6(1):15–36PubMedGoogle Scholar
  3. 3.
    Domingo A, Klein C (2018) Genetics of Parkinson disease. Handb Clin Neurol 147:211–227. CrossRefPubMedGoogle Scholar
  4. 4.
    Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39(6):889–909CrossRefPubMedGoogle Scholar
  5. 5.
    Priyadarshi A, Khuder SA, Schaub EA, Shrivastava S (2000) A meta-analysis of Parkinson’s disease and exposure to pesticides. Neurotoxicology 21(4):435–440PubMedGoogle Scholar
  6. 6.
    Van Maele-Fabry G, Hoet P, Vilain F, Lison D (2012) Occupational exposure to pesticides and Parkinson’s disease: a systematic review and meta-analysis of cohort studies. Environ Int 46:30–43. CrossRefPubMedGoogle Scholar
  7. 7.
    Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case-control study in Taiwan. Neurology 48(6):1583–1588CrossRefPubMedGoogle Scholar
  8. 8.
    Pezzoli G, Cereda E (2013) Exposure to pesticides or solvents and risk of Parkinson disease. Neurology 80(22):2035–2041. CrossRefPubMedGoogle Scholar
  9. 9.
    Freire C, Koifman S (2012) Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology 33(5):947–971. CrossRefPubMedGoogle Scholar
  10. 10.
    Yan MH, Wang X, Zhu X (2013) Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic Biol Med 62:90–101. CrossRefPubMedGoogle Scholar
  11. 11.
    Garcia-Velazquez L, Arias C (2017) The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Res Rev 37:135–145. CrossRefPubMedGoogle Scholar
  12. 12.
    MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17(1):9–26. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E et al (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 100(22):12747–12752. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Joksimovic M, Awatramani R (2014) Wnt/beta-catenin signaling in midbrain dopaminergic neuron specification and neurogenesis. J Mol Cell Biol 6(1):27–33. CrossRefPubMedGoogle Scholar
  15. 15.
    Prakash N, Brodski C, Naserke T, Puelles E, Gogoi R, Hall A, Panhuysen M, Echevarria D et al (2006) A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 133(1):89–98. CrossRefPubMedGoogle Scholar
  16. 16.
    Fukusumi Y, Meier F, Gotz S, Matheus F, Irmler M, Beckervordersandforth R, Faus-Kessler T, Minina E et al (2015) Dickkopf 3 promotes the differentiation of a rostrolateral midbrain dopaminergic neuronal subset in vivo and from pluripotent stem cells in vitro in the mouse. J Neurosci 35(39):13385–13401. CrossRefPubMedGoogle Scholar
  17. 17.
    Salasova A, Yokota C, Potesil D, Zdrahal Z, Bryja V, Arenas E (2017) A proteomic analysis of LRRK2 binding partners reveals interactions with multiple signaling components of the WNT/PCP pathway. Mol Neurodegener 12(1):54. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Berwick DC, Harvey K (2012) LRRK2 functions as a Wnt signaling scaffold, bridging cytosolic proteins and membrane-localized LRP6. Hum Mol Genet 21(22):4966–4979. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Berwick DC, Javaheri B, Wetzel A, Hopkinson M, Nixon-Abell J, Granno S, Pitsillides AA, Harvey K (2017) Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of beta-catenin signaling. Mol Neurodegener 12(1):9. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eaton S (2008) Retromer retrieves wntless. Dev Cell 14(1):4–6. CrossRefPubMedGoogle Scholar
  21. 21.
    Rawal N, Corti O, Sacchetti P, Ardilla-Osorio H, Sehat B, Brice A, Arenas E (2009) Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling. Biochem Biophys Res Commun 388(3):473–478. CrossRefPubMedGoogle Scholar
  22. 22.
    Hofmann JW, McBryan T, Adams PD, Sedivy JM (2014) The effects of aging on the expression of Wnt pathway genes in mouse tissues. Age 36(3):9618. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bayod S, Felice P, Andres P, Rosa P, Camins A, Pallas M, Canudas AM (2015) Downregulation of canonical Wnt signaling in hippocampus of SAMP8 mice. Neurobiol Aging 36(2):720–729. CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang L, Deng J, Pan Q, Zhan Y, Fan JB, Zhang K, Zhang Z (2016) Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease. J Genet Genomics 43(10):587–592. CrossRefPubMedGoogle Scholar
  25. 25.
    Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP, Sommer L, Boussadia O et al (2001) Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 128(8):1253–1264PubMedGoogle Scholar
  26. 26.
    Wang W, Wang X, Fujioka H, Hoppel C, Whone AL, Caldwell MA, Cullen PJ, Liu J et al (2016) Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med 22(1):54–63. CrossRefPubMedGoogle Scholar
  27. 27.
    Jiang S, Nandy P, Wang W, Ma X, Hsia J, Wang C, Wang Z, Niu M et al (2018) Mfn2 ablation causes an oxidative stress response and eventual neuronal death in the hippocampus and cortex. Mol Neurodegener 13(1):5. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fujita K, Seike T, Yutsudo N, Ohno M, Yamada H, Yamaguchi H, Sakumi K, Yamakawa Y et al (2009) Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. PLoS One 4(9):e7247. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dai TL, Zhang C, Peng F, Niu XY, Hu L, Zhang Q, Huang Y, Chen L et al (2014) Depletion of canonical Wnt signaling components has a neuroprotective effect on midbrain dopaminergic neurons in an MPTP-induced mouse model of Parkinson’s disease. Exp Ther Med 8(2):384–390. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823(1–2):1–10CrossRefPubMedGoogle Scholar
  31. 31.
    Selley ML (1998) (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson’s disease. Free Radic Biol Med 25(2):169–174CrossRefPubMedGoogle Scholar
  32. 32.
    McCormack AL, Atienza JG, Johnston LC, Andersen JK, Vu S, Di Monte DA (2005) Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. J Neurochemy 93(4):1030–1037. CrossRefGoogle Scholar
  33. 33.
    Choi WS, Abel G, Klintworth H, Flavell RA, Xia Z (2010) JNK3 mediates paraquat- and rotenone-induced dopaminergic neuron death. J Neuropathol Exp Neurol 69(5):511–520. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hunot S, Vila M, Teismann P, Davis RJ, Hirsch EC, Przedborski S, Rakic P, Flavell RA (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 101(2):665–670. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhao F, Wang W, Wang C, Siedlak SL, Fujioka H, Tang B, Zhu X (2017) Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: implications for idiopathic Parkinson’s disease. Biochim Biophys Acta 1863(6):1359–1370. CrossRefPubMedCentralGoogle Scholar
  36. 36.
    L'Episcopo F, Tirolo C, Testa N, Caniglia S, Morale MC, Cossetti C, D'Adamo P, Zardini E et al (2011) Reactive astrocytes and Wnt/beta-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Neurobiol Dis 41(2):508–527. CrossRefPubMedGoogle Scholar
  37. 37.
    L'Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S, Marchetti B (2011) A Wnt1 regulated Frizzled-1/beta-catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener 6:49. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Dun Y, Li G, Yang Y, Xiong Z, Feng M, Wang M, Zhang Y, Xiang J et al (2012) Inhibition of the canonical Wnt pathway by Dickkopf-1 contributes to the neurodegeneration in 6-OHDA-lesioned rats. Neurosci Lett 525(2):83–88. CrossRefPubMedGoogle Scholar
  39. 39.
    Gollamudi S, Johri A, Calingasan NY, Yang L, Elemento O, Beal MF (2012) Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson’s disease. PLoS One 7(5):e36191. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wei L, Ding L, Mo MS, Lei M, Zhang L, Chen K, Xu P (2015) Wnt3a protects SH-SY5Y cells against 6-hydroxydopamine toxicity by restoration of mitochondria function. Transl Neurodegener 4:11. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wei L, Sun C, Lei M, Li G, Yi L, Luo F, Li Y, Ding L et al (2013) Activation of Wnt/beta-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity. J Mol Neurosci 49(1):105–115. CrossRefPubMedGoogle Scholar
  42. 42.
    Essers MA, de Vries-Smits LM, Barker N, Polderman PE, Burgering BM, Korswagen HC (2005) Functional interaction between beta-catenin and FOXO in oxidative stress signaling. Science 308(5725):1181–1184. CrossRefPubMedGoogle Scholar
  43. 43.
    Lento W, Ito T, Zhao C, Harris JR, Huang W, Jiang C, Owzar K, Piryani S et al (2014) Loss of beta-catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes Dev 28(9):995–1004. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liu P, Su J, Song X, Wang S (2017) Activation of nuclear beta-catenin/c-Myc axis promotes oxidative stress injury in streptozotocin-induced diabetic cardiomyopathy. Biochem Biophys Res Commun 493(4):1573–1580. CrossRefPubMedGoogle Scholar
  45. 45.
    Pacelli C, Giguere N, Bourque MJ, Levesque M, Slack RS, Trudeau LE (2015) Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr Biol 25(18):2349–2360. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PathologyCase Western Reserve UniversityClevelandUSA
  2. 2.Department of Neurology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  3. 3.National Clinical Research Center for Geriatric MedicineChangshaPeople’s Republic of China
  4. 4.Key Laboratory of Hunan Province in Neurodegenerative DisordersCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations