Advertisement

Molecular Neurobiology

, Volume 56, Issue 7, pp 4838–4854 | Cite as

A Novel Mecp2Y120D Knock-in Model Displays Similar Behavioral Traits But Distinct Molecular Features Compared to the Mecp2-Null Mouse Implying Precision Medicine for the Treatment of Rett Syndrome

  • Anna Gandaglia
  • Elena Brivio
  • Sara Carli
  • Michela Palmieri
  • Francesco Bedogni
  • Gilda Stefanelli
  • Anna Bergo
  • Barbara Leva
  • Chiara Cattaneo
  • Lara Pizzamiglio
  • Marco Cicerone
  • Veronica Bianchi
  • Charlotte Kilstrup-Nielsen
  • Ilda D’Annessa
  • Daniele Di Marino
  • Patrizia D’Adamo
  • Flavia Antonucci
  • Angelisa Frasca
  • Nicoletta LandsbergerEmail author
Article

Abstract

MeCP2 is a fundamental protein associated with several neurological disorders, including Rett syndrome. It is considered a multifunctional factor with a prominent role in regulating chromatin structure; however, a full comprehension of the consequences of its deficiency is still lacking. Here, we characterize a novel mouse model of Mecp2 bearing the human mutation Y120D, which is localized in the methyl-binding domain. As most models of Mecp2, the Mecp2Y120D mouse develops a severe Rett-like phenotype. This mutation alters the interaction of the protein with chromatin, but surprisingly, it also impairs its association with corepressors independently on the involved interacting domains. These features, which become overt mainly in the mature brain, cause a more accessible and transcriptionally active chromatin structure; conversely, in the Mecp2-null brain, we find a less accessible and transcriptionally inactive chromatin. By demonstrating that different MECP2 mutations can produce concordant neurological phenotypes but discordant molecular features, we highlight the importance of considering personalized approaches for the treatment of Rett syndrome.

Keywords

MeCP2 Rett syndrome Mouse models Chromatin accessibility Chromatin binding 

Notes

Acknowledgments

We are extremely grateful to Giovanni Tonon and Simona Segalla (San Raffaele Scientific Institute) for their helpful technical suggestions. Part of this work was carried out in ALEMBIC, an advanced microscopy laboratory established by IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele.

Author Contributions

A.G and N. L conceptualized and designed most of the study. P.D-A and F.A. assisted the design and realization of the behavioral and electrophysiological studies, respectively. A.G., E.B., A.B., B.L., C.C., S.C., G.S., L.P., V.B., F.B., M.P., and M.C. conducted the experiments, prepared most of the figures, and revised the manuscript. A.F. helped with statistical analysis of data. N.L. wrote the manuscript with the assistance of A.F. D.D-M, I.D., and C.K-N assisted in interpreting and discussing results.

Funding Information

This work was mainly supported by the Italian parents’ association “pro RETT ricerca” to N.L. Financial support was from Fondazione Telethon, Italy (Grant no. GGP16015 to F.A.). Functional experiments were supported by the Italian Ministry of Research and Education program “FIRB giovani” 2010, protocol number RBFR10ZBYZ. Fondazione Veronesi (Milan, Italy) provided additional funding to F.B.

Compliance with Ethical Standards

Research involving animals was performed in accordance with the European Community Council Directive 2010/63/UE for care and use of experimental animals; all the protocols were approved by the Italian Minister for Scientific Research and by the San Raffaele Scientific Institutional Animal Care and Use Committee in accordance with the Italian law.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1412_MOESM1_ESM.pdf (570 kb)
ESM 1 (PDF 570 KB)

References

  1. 1.
    Amir RE, Van den Veyver IB, Wan M et al (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188.  https://doi.org/10.1038/13810 CrossRefPubMedGoogle Scholar
  2. 2.
    Neul JL, Kaufmann WE, Glaze DG et al (2010) Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 68:944–950.  https://doi.org/10.1002/ana.22124 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY (2013) An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 152:984–996.  https://doi.org/10.1016/j.cell.2013.01.038 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bedogni F, Rossi RL, Galli F, Cobolli Gigli C, Gandaglia A, Kilstrup-Nielsen C, Landsberger N (2014) Rett syndrome and the urge of novel approaches to study MeCP2 functions and mechanisms of action. Neurosci Biobehav Rev 46:187–201.  https://doi.org/10.1016/j.neubiorev.2014.01.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, Guy J, Kastan NR et al (2013) Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci 16:898–902.  https://doi.org/10.1038/nn.3434 CrossRefPubMedGoogle Scholar
  6. 6.
    Nan X, Hou J, Maclean A, Nasir J, Lafuente MJ, Shu X, Kriaucionis S, Bird A (2007) Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc Natl Acad Sci 104:2709–2714.  https://doi.org/10.1073/pnas.0608056104 CrossRefPubMedGoogle Scholar
  7. 7.
    Skene PJ, Illingworth RS, Webb S, Kerr ARW, James KD, Turner DJ, Andrews R, Bird AP (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468.  https://doi.org/10.1016/j.molcel.2010.01.030 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327–331.  https://doi.org/10.1038/85906 CrossRefPubMedGoogle Scholar
  9. 9.
    Guy J, Hendrich B, Holmes M, Martin JE, Bird A (2001) A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet 27:322–326.  https://doi.org/10.1038/85899 CrossRefPubMedGoogle Scholar
  10. 10.
    Ricceri L, De Filippis B, Laviola G (2008) Mouse models of Rett syndrome: from behavioural phenotyping to preclinical evaluation of new therapeutic approaches. Behav Pharmacol 19:501–517.  https://doi.org/10.1097/FBP.0b013e32830c3645 CrossRefPubMedGoogle Scholar
  11. 11.
    Stearns NA, Schaevitz LR, Bowling H, Nag N, Berger UV, Berger-Sweeney J (2007) Behavioral and anatomical abnormalities in Mecp2 mutant mice: a model for Rett syndrome. Neuroscience 146:907–921.  https://doi.org/10.1016/j.neuroscience.2007.02.009 CrossRefPubMedGoogle Scholar
  12. 12.
    Brown K, Selfridge J, Lagger S, Connelly J, de Sousa D, Kerr A, Webb S, Guy J et al (2016) The molecular basis of variable phenotypic severity among common missense mutations causing Rett syndrome. Hum Mol Genet 25:558–570.  https://doi.org/10.1093/hmg/ddv496 CrossRefPubMedGoogle Scholar
  13. 13.
    Bellini E, Pavesi G, Barbiero I, Bergo A, Chandola C, Nawaz MS, Rusconi L, Stefanelli G et al (2014) MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front Cell Neurosci 8:236.  https://doi.org/10.3389/fncel.2014.00236 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Goffin D, Allen M, Zhang L, Amorim M, Wang ITJ, Reyes ARS, Mercado-Berton A, Ong C et al (2012) Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses. Nat Neurosci 15:274–283.  https://doi.org/10.1038/nn.2997 CrossRefGoogle Scholar
  15. 15.
    D’Annessa I, Gandaglia A, Brivio E et al (2018) Tyr120Asp mutation alters domain flexibility and dynamics of MeCP2 DNA binding domain leading to impaired DNA interaction: atomistic characterization of a Rett syndrome causing mutation. Biochim Biophys Acta Gen Subj 1862:1180–1189.  https://doi.org/10.1016/j.bbagen.2018.02.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Inui K, Akagi M, Ono J, Tsukamoto H, Shimono K, Mano T, Imai K, Yamada M et al (2001) Mutational analysis of MECP2 in Japanese patients with atypical Rett syndrome. Brain and Development 23:212–215.  https://doi.org/10.1016/S0387-7604(01)00197-8 CrossRefPubMedGoogle Scholar
  17. 17.
    Agarwal N, Becker A, Jost KL, Haase S, Thakur BK, Brero A, Hardt T, Kudo S et al (2011) MeCP2 Rett mutations affect large scale chromatin organization. Hum Mol Genet 20:4187–4195.  https://doi.org/10.1093/hmg/ddr346 CrossRefPubMedGoogle Scholar
  18. 18.
    Kudo S, Nomura Y, Segawa M, Fujita N, Nakao M, Schanen C, Tamura M (2003) Heterogeneity in residual function of MeCP2 carrying missense mutations in the methyl CpG binding domain. J Med Genet 40:487–493.  https://doi.org/10.1136/jmg.40.7.487 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stefanelli G, Gandaglia A, Costa M, Cheema MS, di Marino D, Barbiero I, Kilstrup-Nielsen C, Ausió J et al (2016) Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep 6:28295.  https://doi.org/10.1038/srep28295 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bergo A, Strollo M, Gai M et al (2015) Methyl-CpG binding protein 2 (MeCP2) localizes at the centrosome and is required for proper mitotic spindle organization. J Biol Chem 290:3223–3237.  https://doi.org/10.1074/jbc.M114.608125 CrossRefPubMedGoogle Scholar
  21. 21.
    Cobolli Gigli C, Scaramuzza L, Gandaglia A, Bellini E, Gabaglio M, Parolaro D, Kilstrup-Nielsen C, Landsberger N et al (2016) MeCP2 related studies benefit from the use of CD1 as genetic background. PLoS One 11:e0153473.  https://doi.org/10.1371/journal.pone.0153473 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Guy J, Gan J, Selfridge J, Cobb S, Bird A (2007) Reversal of neurological defects in a mouse model of Rett syndrome. Science 315:1143–1147.  https://doi.org/10.1126/science.1138389 CrossRefPubMedGoogle Scholar
  23. 23.
    Antonucci F, Corradini I, Morini R, Fossati G, Menna E, Pozzi D, Pacioni S, Verderio C et al (2013) Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses. EMBO Rep 14:645–651.  https://doi.org/10.1038/embor.2013.75 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Shahbazian MD, Young JI, Yuva-Paylor LA, Spencer CM, Antalffy BA, Noebels JL, Armstrong DL, Paylor R et al (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243–254.  https://doi.org/10.1016/S0896-6273(02)00768-7 CrossRefPubMedGoogle Scholar
  25. 25.
    Katz DM, Berger-Sweeney JE, Eubanks JH, Justice MJ, Neul JL, Pozzo-Miller L, Blue ME, Christian D et al (2012) Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech 5:733–745.  https://doi.org/10.1242/dmm.011007 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bedogni F, Cobolli Gigli C, Pozzi D, Rossi RL, Scaramuzza L, Rossetti G, Pagani M, Kilstrup-Nielsen C et al (2016) Defects during Mecp2 null embryonic cortex development precede the onset of overt neurological symptoms. Cereb Cortex 26:2517–2529.  https://doi.org/10.1093/cercor/bhv078 CrossRefPubMedGoogle Scholar
  27. 27.
    Li Y, Wang H, Muffat J, Cheng AW, Orlando DA, Lovén J, Kwok SM, Feldman DA et al (2013) Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syndrome neurons. Cell Stem Cell 13:446–458.  https://doi.org/10.1016/j.stem.2013.09.001 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, Stefanelli G, Calcagno E, Morello N et al (2011) Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum Mol Genet 20:1182–1196.  https://doi.org/10.1093/hmg/ddq563 CrossRefPubMedGoogle Scholar
  29. 29.
    Samaco RC, Fryer JD, Ren J, Fyffe S, Chao HT, Sun Y, Greer JJ, Zoghbi HY et al (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17:1718–1727.  https://doi.org/10.1093/hmg/ddn062 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Guy J, Cheval H, Selfridge J, Bird A (2011) The role of MeCP2 in the brain. Annu Rev Cell Dev Biol 27:631–652.  https://doi.org/10.1146/annurev-cellbio-092910-154121 CrossRefPubMedGoogle Scholar
  31. 31.
    Kruusvee V, Lyst MJ, Taylor C, Tarnauskaitė Ž, Bird AP, Cook AG (2017) Structure of the MeCP2–TBLR1 complex reveals a molecular basis for Rett syndrome and related disorders. Proc Natl Acad Sci 114:E3243–E3250.  https://doi.org/10.1073/pnas.1700731114 CrossRefPubMedGoogle Scholar
  32. 32.
    Egloff S, Murphy S (2008) Role of the C-terminal domain of RNA polymerase II in expression of small nuclear RNA genes. Biochem Soc Trans 36:537–539.  https://doi.org/10.1042/BST0360537 CrossRefPubMedGoogle Scholar
  33. 33.
    Hirose Y, Ohkuma Y (2007) Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression. J Biochem 141:601–608.  https://doi.org/10.1093/jb/mvm090 CrossRefPubMedGoogle Scholar
  34. 34.
    Linhoff MW, Garg SK, Mandel G (2015) A high-resolution imaging approach to investigate chromatin architecture in complex tissues. Cell 163:246–255.  https://doi.org/10.1016/j.cell.2015.09.002 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936.  https://doi.org/10.1101/gad.1477006 CrossRefPubMedGoogle Scholar
  36. 36.
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 1237905–1237905:341.  https://doi.org/10.1126/science.1237905 CrossRefGoogle Scholar
  37. 37.
    Ludwig AK, Zhang P, Hastert FD, Meyer S, Rausch C, Herce HD, Müller U, Lehmkuhl A et al (2017) Binding of MBD proteins to DNA blocks Tet1 function thereby modulating transcriptional noise. Nucleic Acids Res 45:2438–2457.  https://doi.org/10.1093/nar/gkw1197 CrossRefPubMedGoogle Scholar
  38. 38.
    Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012) MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151:1417–1430.  https://doi.org/10.1016/j.cell.2012.11.022 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lamonica JM, Kwon DY, Goffin D, Fenik P, Johnson BS, Cui Y, Guo H, Veasey S et al (2017) Elevating expression of MeCP2 T158M rescues DNA binding and Rett syndrome–like phenotypes. J Clin Invest 127:1889–1904.  https://doi.org/10.1172/JCI90967 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thambirajah AA, Eubanks JH, Ausió J (2009) MeCP2 post-translational regulation through PEST domains: two novel hypotheses. BioEssays 31:561–569.  https://doi.org/10.1002/bies.200800220 CrossRefPubMedGoogle Scholar
  41. 41.
    Riedmann C, Fondufe-Mittendorf YN (2016) Comparative analysis of linker histone H1, MeCP2, and HMGD1 on nucleosome stability and target site accessibility. Sci Rep 6:33186.  https://doi.org/10.1038/srep33186 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tillotson R, Selfridge J, Koerner MV, Gadalla KKE, Guy J, de Sousa D, Hector RD, Cobb SR et al (2017) Radically truncated MeCP2 rescues Rett syndrome-like neurological defects. Nature 550:398–401.  https://doi.org/10.1038/nature24058 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anna Gandaglia
    • 1
  • Elena Brivio
    • 1
    • 2
  • Sara Carli
    • 1
  • Michela Palmieri
    • 1
  • Francesco Bedogni
    • 1
  • Gilda Stefanelli
    • 1
    • 3
  • Anna Bergo
    • 4
  • Barbara Leva
    • 4
  • Chiara Cattaneo
    • 1
    • 5
  • Lara Pizzamiglio
    • 6
  • Marco Cicerone
    • 1
  • Veronica Bianchi
    • 1
  • Charlotte Kilstrup-Nielsen
    • 4
  • Ilda D’Annessa
    • 7
  • Daniele Di Marino
    • 8
  • Patrizia D’Adamo
    • 1
  • Flavia Antonucci
    • 6
  • Angelisa Frasca
    • 6
  • Nicoletta Landsberger
    • 1
    • 6
    Email author
  1. 1.Neuroscience DivisionIRCCS San Raffaele Scientific InstituteMilanItaly
  2. 2.Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of PsychiatryInternational Max Planck Research School for Translational PsychiatryMunichGermany
  3. 3.Department of PsychologyUniversity of Toronto MississaugaMississaugaCanada
  4. 4.Department of Biotechnology and Life SciencesUniversity of InsubriaBusto ArsizioItaly
  5. 5.Department of Molecular Oncology and Immunologythe Netherlands Cancer InstituteAmsterdamThe Netherlands
  6. 6.Department of Medical Biotechnology and Translational MedicineUniversity of MilanMilanItaly
  7. 7.Istituto di Chimica del Riconoscimento Molecolare, CNR (ICRM-CNR)MilanItaly
  8. 8.Department of Informatics, Institute of Computational ScienceUniversità della Svizzera ItalianaLuganoSwitzerland

Personalised recommendations