Molecular Neurobiology

, Volume 56, Issue 7, pp 4718–4729 | Cite as

Resveratrol Restores Neuronal Tight Junction Proteins Through Correction of Ammonia and Inflammation in CCl4-Induced Cirrhotic Mice

  • Balasubramaniyan VairappanEmail author
  • M. Sundhar
  • B. H. Srinivas


Systemic inflammation and ammonia (hyperammonemia) act synergistically in the pathogenesis of hepatic encephalopathy (HE), the neurobehavioral sequelae of advanced liver disease. In cirrhotic patients, we have recently observed elevated levels of circulating neuronal tight junction (TJ) protein, zonula occludens 1 (ZO-1), reflective of a change to blood–brain barrier (BBB) integrity. Moreover, ZO-1 levels positively correlated with hyperammonemia, although any potential relationship remains unclear. Using a carbon tetrachloride (CCl4)–induced mouse model of cirrhosis, we primarily looked to explore the relationship between neuronal TJ protein expression and hyperammonemia. Secondarily, we assessed the potential role of a natural antioxidant, resveratrol, on neuronal TJ protein expression and hyperammonemia. Over 12 weeks, male Swiss mice were randomized (n = 8/group) to either naïve controls or induced cirrhosis, using two doses of intraperitoneal CCl4 (0.5 ml/kg/week). After 12 weeks, naïve and cirrhotic mice were randomized to receive either 2 weeks of par-oral resveratrol (10 mg/kg). Plasma samples were analyzed for ammonia, liver biochemistry (ALT, AST, albumin, and bilirubin), and pro-inflammatory cytokines (TNF-α and IL-1β), and brain tissue for brain water content, TJ protein expression (e.g., ZO-1, claudin 5, and occludin), and tissue oxidative stress and inflammatory markers (NF-κB and iNOS) using western blotting. Compared to naïve mice, cirrhosis significantly increased circulating ammonia, brain water, ALT, AST, TNF-α, IL-1β, 4HNE, NF-κB, and iNOS levels, with a concomitant reduction in all TJ proteins (P < 0.05, respectively). In cirrhotic mice, resveratrol treatment ameliorated these changes significantly (P < 0.05, respectively). Our findings provide evidence for a causal association between hyperammonemia and inflammation in cirrhosis linked to TJ protein alterations, BBB disruption, and HE predilection. Moreover, this is the first report of a potential role for resveratrol as a novel therapeutic approach to managing neurological sequelae complicating cirrhosis.


Tight junction proteins Blood–brain barrier integrity Neurotoxin Hyperammonemia Systemic inflammatory response Neuroinflammation Resveratrol Antioxidant NF-κB Natural flavonoids 



This work was supported by the 5-year Ramalingaswami Re-entry Fellowship grant (102/IFD/SAN/22/2013-14) awarded to V.B. from the Department of Biotechnology (DBT), Government of India.

Author Contributions

V.B. designed the study; V.B. and M.S. conducted the study; V.B. and M.S. analyzed the data statistically; V.B. wrote and critically reviewed the manuscript; B.H.S. interpreted the histology and immunohistochemical findings.

Compliance with Ethical Standards

Conflict of Interest Statement

All the authors declare that there is no conflict of interest.

Language Certificate

The manuscript underwent proof read and plagiarism check prior submission to the Journal.

Institutional Review Board Statement

The study was reviewed and approved by the JIPMER Scientific Advisory Committee and Institutional Animal Ethics Committee.


  1. 1.
    Wijdicks EF (2016) Hepatic encephalopathy. N Engl J Med 375(17):1660–1670. CrossRefPubMedGoogle Scholar
  2. 2.
    Weiss N, Jalan R, Thabut D (2018) Understanding hepatic encephalopathy. Intensive Care Med 44(2):231–234. CrossRefPubMedGoogle Scholar
  3. 3.
    Fichet J, Mercier E, Genee O, Garot D, Legras A, Dequin PF, Perrotin D (2009) Prognosis and 1-year mortality of intensive care unit patients with severe hepatic encephalopathy. J Crit Care 24(3):364–370. CrossRefPubMedGoogle Scholar
  4. 4.
    Shawcross DL, Shabbir SS, Taylor NJ, Hughes RD (2010) Ammonia and the neutrophil in the pathogenesis of hepatic encephalopathy in cirrhosis. Hepatology 51(3):1062–1069. CrossRefPubMedGoogle Scholar
  5. 5.
    Sawhney R, Holland-Fischer P, Rosselli M, Mookerjee RP, Agarwal B, Jalan R (2016) Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients. Liver Transpl 22(6):732–742. CrossRefPubMedGoogle Scholar
  6. 6.
    Olde Damink SW, Jalan R, Redhead DN, Hayes PC, Deutz NE, Soeters PB (2002) Interorgan ammonia and amino acid metabolism in metabolically stable patients with cirrhosis and a TIPSS. Hepatology 36(5):1163–1171. CrossRefPubMedGoogle Scholar
  7. 7.
    Skowronska M, Albrecht J (2012) Alterations of blood brain barrier function in hyperammonemia: an overview. Neurotox Res 21(2):236–244. CrossRefPubMedGoogle Scholar
  8. 8.
    Stamatovic SM, Keep RF, Andjelkovic AV (2008) Brain endothelial cell–cell junctions: how to "open" the blood brain barrier. Curr Neuropharmacol 6(3):179–192. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wang D, Li SP, Fu JS, Zhang S, Bai L, Guo L (2016) Resveratrol defends blood–brain barrier integrity in experimental autoimmune encephalomyelitis mice. J Neurophysiol 116(5):2173–2179. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Takechi R, Lam V, Brook E, Giles C, Fimognari N, Mooranian A, Al-Salami H, Coulson SH et al (2017) Blood–brain barrier dysfunction precedes cognitive decline and neurodegeneration in diabetic insulin resistant mouse model: an implication for causal link. Front Aging Neurosci 9:399. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hadjihambi A, De Chiara F, Hosford PS, Habtetion A, Karagiannis A, Davies N, Gourine AV, Jalan R (2017) Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 65(4):1306–1318. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Belanger M, Asashima T, Ohtsuki S, Yamaguchi H, Ito S, Terasaki T (2007) Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro. Neurochem Int 50(1):95–101. CrossRefPubMedGoogle Scholar
  13. 13.
    Raleigh DR, Marchiando AM, Zhang Y, Shen L, Sasaki H, Wang Y, Long M, Turner JR (2010) Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions. Mol Biol Cell 21(7):1200–1213. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127(6 Pt 1):1617–1626CrossRefGoogle Scholar
  15. 15.
    Cording J, Berg J, Kading N, Bellmann C, Tscheik C, Westphal JK, Milatz S, Gunzel D et al (2013) In tight junctions, claudins regulate the interactions between occludin, tricellulin and marvelD3, which, inversely, modulate claudin oligomerization. J Cell Sci 126(Pt 2):554–564. CrossRefPubMedGoogle Scholar
  16. 16.
    Chow BW, Gu C (2015) The molecular constituents of the blood–brain barrier. Trends Neurosci 38(10):598–608. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rochfort KD, Cummins PM (2015) The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. Biochem Soc Trans 43(4):702–706. CrossRefPubMedGoogle Scholar
  18. 18.
    McLoughlin A, Rochfort KD, McDonnell CJ, Kerrigan SW, Cummins PM (2017) Staphylococcus aureus-mediated blood–brain barrier injury: an in vitro human brain microvascular endothelial cell model. Cell Microbiol 19 (3). doi: CrossRefGoogle Scholar
  19. 19.
    Amararathna M, Johnston MR, Rupasinghe HP (2016) Plant polyphenols as chemopreventive agents for lung cancer. Int J Mol Sci 17(8):1352. CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Carrizzo A, Forte M, Damato A, Trimarco V, Salzano F, Bartolo M, Maciag A, Puca AA et al (2013) Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem Toxicol 61:215–226. CrossRefGoogle Scholar
  21. 21.
    Hu J, Han H, Cao P, Yu W, Yang C, Gao Y, Yuan W (2017) Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice. Am J Transl Res 9(10):4607–4616PubMedPubMedCentralGoogle Scholar
  22. 22.
    Ling KH, Wan ML, El-Nezami H, Wang M (2016) Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation. Chem Res Toxicol 29(5):823–833. CrossRefPubMedGoogle Scholar
  23. 23.
    Lee S, Yoon KD, Lee M, Cho Y, Choi G, Jang H, Kim B, Jung DH et al (2016) Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase. Br J Pharmacol 173(1):191–211. CrossRefPubMedGoogle Scholar
  24. 24.
    Kessoku T, Imajo K, Honda Y, Kato T, Ogawa Y, Tomeno W, Kato S, Mawatari H et al (2016) Resveratrol ameliorates fibrosis and inflammation in a mouse model of nonalcoholic steatohepatitis. Sci Rep 6:22251. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lin YL, Chang HC, Chen TL, Chang JH, Chiu WT, Lin JW, Chen RM (2010) Resveratrol protects against oxidized LDL-induced breakage of the blood–brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutr 140(12):2187–2192. CrossRefGoogle Scholar
  26. 26.
    Hu M, Liu B (2016) Resveratrol attenuates lipopolysaccharide-induced dysfunction of blood–brain barrier in endothelial cells via AMPK activation. Korean J Physiol Pharmacol 20(4):325–332. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Balasubramaniyan V, Wright G, Sharma V, Davies NA, Sharifi Y, Habtesion A, Mookerjee RP, Jalan R (2012) Ammonia reduction with ornithine phenylacetate restores brain eNOS activity via the DDAH-ADMA pathway in bile duct-ligated cirrhotic rats. Am J Physiol Gastrointest Liver Physiol 302(1):G145–G152. CrossRefPubMedGoogle Scholar
  28. 28.
    Wright G, Jalan R (2007) Ammonia and inflammation in the pathogenesis of hepatic encephalopathy: Pandora's box? Hepatology 46(2):291–294. CrossRefPubMedGoogle Scholar
  29. 29.
    Perez Tamayo R (1983) Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology 3(1):112–120CrossRefGoogle Scholar
  30. 30.
    Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67(4):259–279CrossRefGoogle Scholar
  31. 31.
    Bosoi CR, Rose CF (2009) Identifying the direct effects of ammonia on the brain. Metab Brain Dis 24(1):95–102. CrossRefPubMedGoogle Scholar
  32. 32.
    Bobermin LD, Souza DO, Goncalves CA, Quincozes-Santos A (2017) Resveratrol prevents ammonia-induced mitochondrial dysfunction and cellular redox imbalance in C6 astroglial cells. Nutr Neurosci 21:1–10. CrossRefGoogle Scholar
  33. 33.
    Bobermin LD, Hansel G, Scherer EB, Wyse AT, Souza DO, Quincozes-Santos A, Goncalves CA (2015) Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol in Vitro 29(8):2022–2029. CrossRefPubMedGoogle Scholar
  34. 34.
    Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127(8):3136–3151. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dhanda S, Sandhir R (2017) Blood–brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins. Mol Neurobiol.
  36. 36.
    Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood–brain barrier breakdown. Proc Natl Acad Sci U S A 106(6):1977–1982. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T (2007) Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. J Cell Physiol 210(1):81–86. CrossRefPubMedGoogle Scholar
  38. 38.
    Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S (2003) Size-selective loosening of the blood–brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100(3):323–331CrossRefGoogle Scholar
  40. 40.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788CrossRefGoogle Scholar
  41. 41.
    Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T et al (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141(2):397–408CrossRefGoogle Scholar
  42. 42.
    Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142CrossRefGoogle Scholar
  43. 43.
    Chen F, Ohashi N, Li W, Eckman C, Nguyen JH (2009) Disruptions of occludin and claudin-5 in brain endothelial cells in vitro and in brains of mice with acute liver failure. Hepatology 50(6):1914–1923. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Aldridge DR, Tranah EJ, Shawcross DL (2015) Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J Clin Exp Hepatol 5(Suppl 1):S7–S20. CrossRefPubMedGoogle Scholar
  45. 45.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pozdeev VI, Lang E, Gorg B, Bidmon HJ, Shinde PV, Kircheis G, Herebian D, Pfeffer K et al (2017) TNFalpha induced up-regulation of Na(+),K(+),2Cl(−) cotransporter NKCC1 in hepatic ammonia clearance and cerebral ammonia toxicity. Sci Rep 7(1):7938. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Lv S, Song HL, Zhou Y, Li LX, Cui W, Wang W, Liu P (2010) Tumour necrosis factor-alpha affects blood–brain barrier permeability and tight junction-associated occludin in acute liver failure. Liver Int 30(8):1198–1210. CrossRefPubMedGoogle Scholar
  49. 49.
    Rochfort KD, Collins LE, McLoughlin A, Cummins PM (2016) Tumour necrosis factor-alpha-mediated disruption of cerebrovascular endothelial barrier integrity in vitro involves the production of proinflammatory interleukin-6. J Neurochem 136(3):564–572. CrossRefPubMedGoogle Scholar
  50. 50.
    Didier N, Romero IA, Creminon C, Wijkhuisen A, Grassi J, Mabondzo A (2003) Secretion of interleukin-1beta by astrocytes mediates endothelin-1 and tumour necrosis factor-alpha effects on human brain microvascular endothelial cell permeability. J Neurochem 86(1):246–254CrossRefGoogle Scholar
  51. 51.
    Wright G, Davies NA, Shawcross DL, Hodges SJ, Zwingmann C, Brooks HF, Mani AR, Harry D et al (2007) Endotoxemia produces coma and brain swelling in bile duct ligated rats. Hepatology 45(6):1517–1526. CrossRefPubMedGoogle Scholar
  52. 52.
    Wright G, Shawcross D, Olde Damink SW, Jalan R (2007) Brain cytokine flux in acute liver failure and its relationship with intracranial hypertension. Metab Brain Dis 22(3–4):375–388. CrossRefPubMedGoogle Scholar
  53. 53.
    Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Halliwell B (2009) The wanderings of a free radical. Free Radic Biol Med 46(5):531–542. CrossRefPubMedGoogle Scholar
  55. 55.
    Gonzalez-Mariscal L, Quiros M, Diaz-Coranguez M (2011) ZO proteins and redox-dependent processes. Antioxid Redox Signal 15(5):1235–1253. CrossRefPubMedGoogle Scholar
  56. 56.
    Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981(1–2):193–200CrossRefGoogle Scholar
  57. 57.
    Norenberg MD, Jayakumar AR, Rama Rao KV, Panickar KS (2007) New concepts in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22(3–4):219–234. CrossRefPubMedGoogle Scholar
  58. 58.
    Schaur RJ (2003) Basic aspects of the biochemical reactivity of 4-hydroxynonenal. Mol Asp Med 24(4–5):149–159CrossRefGoogle Scholar
  59. 59.
    Pallebage-Gamarallage M, Takechi R, Lam V, Elahy M, Mamo J (2016) Pharmacological modulation of dietary lipid-induced cerebral capillary dysfunction: considerations for reducing risk for Alzheimer's disease. Crit Rev Clin Lab Sci 53(3):166–183. CrossRefPubMedGoogle Scholar
  60. 60.
    Gu X, Cai Z, Cai M, Liu K, Liu D, Zhang Q, Tan J, Ma Q (2018) AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol-induced neurodegeneration by resveratrol. Mol Med Rep.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Liver Diseases Research Lab, Department of BiochemistryJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PondicherryIndia
  2. 2.Department of PathologyJawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)PondicherryIndia

Personalised recommendations