Advertisement

Early Manifestations of Brain Aging in Mice Due to Low Dietary Folate and Mild MTHFR Deficiency

  • Renata H. Bahous
  • Marta Cosín-Tomás
  • Liyuan Deng
  • Daniel Leclerc
  • Olga Malysheva
  • Ming-Kai Ho
  • Mercè Pallàs
  • Perla Kaliman
  • Barry J. Bedell
  • Marie A. Caudill
  • Rima Rozen
Article

Abstract

Folate is an important B vitamin required for methylation reactions, nucleotide and neurotransmitter synthesis, and maintenance of homocysteine at nontoxic levels. Its metabolism is tightly linked to that of choline, a precursor to acetylcholine and membrane phospholipids. Low folate intake and genetic variants in folate metabolism, such as the methylenetetrahydrofolate reductase (MTHFR) 677 C>T polymorphism, have been suggested to impact brain function and increase the risk for cognitive decline and late-onset Alzheimer’s disease. Our study aimed to assess the impact of genetic and nutritional disturbances in folate metabolism, and their potential interaction, on features of cognitive decline and brain biochemistry in a mouse model. Wild-type and Mthfr+/− mice, a model for the MTHFR 677 C>T polymorphism, were fed control or folate-deficient diets from weaning until 8 and 10 months of age. We observed short-term memory impairment measured by the novel object paradigm, altered transcriptional levels of synaptic markers and epigenetic enzymes, as well as impaired choline metabolism due to the Mthfr+/− genotype in cortex or hippocampus. We also detected changes in mRNA levels of Presenillin-1, neurotrophic factors, one-carbon metabolic and epigenetic enzymes, as well as reduced levels of S-adenosylmethionine and acetylcholine, due to the folate-deficient diet. These findings shed further insights into the mechanisms by which genetic and dietary folate metabolic disturbances increase the risk for cognitive decline and suggest that these mechanisms are distinct.

Keywords

Aging Brain Choline Epigenetics Folate MTHFR 

Notes

Acknowledgements

We thank Dr. Nancy Lévesque for her help in conducting the experiments. We also thank Marie-Julie Allard and Mathilde Chevin (McGill University) for assistance with methodologies.

Funding Information

This work was supported by the Canadian Institutes of Health Research (MOP-43232 to RR). RHB is the recipient of a Doctoral Award from the Fonds de Recherche du Québec-Santé. MCT is the recipient of a Predoctoral Fellowship from MINECO (FPU 2013) and Post-Doctoral Award from the Fonds de Recherche du Québec-Santé. The Research Institute is supported by a Center’s grant from the Fonds de Recherche du Québec-Santé.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12035_2018_1375_MOESM1_ESM.docx (150 kb)
ESM 1 (DOCX 150 kb)

References

  1. 1.
    Moore K, Hughes CF, Ward M, Hoey L, McNulty H (2018) Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc 77:1–12.  https://doi.org/10.1017/S0029665117004177 CrossRefGoogle Scholar
  2. 2.
    Bishop NA, Lu T, Yankner BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464(7288):529–535CrossRefGoogle Scholar
  3. 3.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217CrossRefGoogle Scholar
  4. 4.
    Jagust W (2013) Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 77(2):219–234CrossRefGoogle Scholar
  5. 5.
    Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9(1):25–34CrossRefGoogle Scholar
  6. 6.
    Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack CR et al (2011) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292CrossRefGoogle Scholar
  7. 7.
    Imtiaz B, Tolppanen A-M, Kivipelto M, Soininen H (2014) Future directions in Alzheimer’s disease from risk factors to prevention. Biochem Pharmacol 88(4):661–670CrossRefGoogle Scholar
  8. 8.
    Deckers K, Boxtel MP, Schiepers OJ, Vugt M, Muñoz Sánchez JL, Anstey KJ, Brayne C, Dartigues JF et al (2015) Target risk factors for dementia prevention: a systematic review and Delphi consensus study on the evidence from observational studies. Int J Geriatr Psychiatry 30(3):234–246CrossRefGoogle Scholar
  9. 9.
    Lopes da Silva S, Vellas B, Elemans S, Luchsinger J, Kamphuis P, Yaffe K, Sijben J, Groenendijk M et al (2013) Plasma nutrient status of patients with Alzheimer’s disease: systematic review and meta-analysis. Alzheimers DementGoogle Scholar
  10. 10.
    Setién-Suero E, Suárez-Pinilla M, Suarez-Pinilla P, Crespo-Facorro B, Ayesa-Arriola R (2016) Homocysteine and cognition: a systematic review of 111 studies. Neurosci Biobehav Rev 69:280–298CrossRefGoogle Scholar
  11. 11.
    Laumet G, Chouraki V, Grenier-Boley B, Legry V, Heath S, Zelenika D, Fievet N, Hannequin D et al (2010) Systematic analysis of candidate genes for Alzheimer’s disease in a French, genome-wide association study. J Alzheimers Dis 20(4):1181–1188CrossRefGoogle Scholar
  12. 12.
    Rajagopalan P, Jahanshad N, Stein JL, Hua X, Madsen SK, Kohannim O, Hibar DP, Toga AW et al (2012) Common folate gene variant, MTHFR C677T, is associated with brain structure in two independent cohorts of people with mild cognitive impairment. Neuroimage Clin 1(1):179–187CrossRefGoogle Scholar
  13. 13.
    Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85(2):614S–620SPubMedGoogle Scholar
  14. 14.
    Reynolds E (2006) Vitamin B12, folic acid, and the nervous system. Lancet Neurol 5(11):949–960CrossRefGoogle Scholar
  15. 15.
    Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG, Boers GJ, den Heijer M et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113CrossRefGoogle Scholar
  16. 16.
    Meadows DN, Pyzik M, Wu Q, Torre S, Gros P, Vidal SM, Rozen R (2014) Increased resistance to malaria in mice with methylenetetrahydrofolate reductase (Mthfr) deficiency suggests a mechanism for selection of the MTHFR 677C> T (c. 665C> T) variant. Hum Mutat 35(5):594–600CrossRefGoogle Scholar
  17. 17.
    Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D’Agostino RB, Wilson PW, Wolf PA (2002) Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 346(7):476–483CrossRefGoogle Scholar
  18. 18.
    Wald DS, Kasturiratne A, Simmonds M (2010) Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med 123(6):522–527.e522CrossRefGoogle Scholar
  19. 19.
    Devlin AM, Arning E, Bottiglieri T, Faraci FM, Rozen R, Lentz SR (2004) Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 103(7):2624–2629CrossRefGoogle Scholar
  20. 20.
    Chen Z, Karaplis AC, Ackerman SL, Pogribny IP, Melnyk S, Lussier-Cacan S, Chen MF, Pai A et al (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10(5):433–443CrossRefGoogle Scholar
  21. 21.
    Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S (2011) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32(2):187–199CrossRefGoogle Scholar
  22. 22.
    Chan A, Tchantchou F, Rogers EJ, Shea TB (2009) Dietary deficiency increases presenilin expression, gamma-secretase activity, and Abeta levels: potentiation by ApoE genotype and alleviation by S-adenosyl methionine. J Neurochem 110(3):831–836CrossRefGoogle Scholar
  23. 23.
    Caudill MA (2009) Folate and choline interrelationships: metabolic and potential health implications. In: Bailey LB (ed) Folate in health and disease, vol 1, 2nd edn. CRC Press, USA, pp. 449–465Google Scholar
  24. 24.
    Yan J, Wang W, Gregory JF 3rd, Malysheva O, Brenna JT, Stabler SP, Allen RH, Caudill MA (2011) MTHFR C677T genotype influences the isotopic enrichment of one-carbon metabolites in folate-compromised men consuming d9-choline. Am J Clin Nutr 93(2):348–355CrossRefGoogle Scholar
  25. 25.
    Ganz AB, Shields K, Fomin VG, Lopez YS, Mohan S, Lovesky J, Chuang JC, Ganti A et al (2016) Genetic impairments in folate enzymes increase dependence on dietary choline for phosphatidylcholine production at the expense of betaine synthesis. FASEB J 30(10):3321–3333CrossRefGoogle Scholar
  26. 26.
    Jadavji NM, Deng L, Leclerc D, Malysheva O, Bedell BJ, Caudill MA, Rozen R (2012) Severe methylenetetrahydrofolate reductase deficiency in mice results in behavioral anomalies with morphological and biochemical changes in hippocampus. Mol Genet Metab 106(2):149–159CrossRefGoogle Scholar
  27. 27.
    Troen AM, Chao WH, Crivello NA, D’Anci KE, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH (2008) Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by dietary methionine without lowering plasma homocysteine. J Nutr 138(12):2502–2509CrossRefGoogle Scholar
  28. 28.
    Selley ML (2007) A metabolic link between S-adenosylhomocysteine and polyunsaturated fatty acid metabolism in Alzheimer’s disease. Neurobiol Aging 28(12):1834–1839CrossRefGoogle Scholar
  29. 29.
    Zhuo J-M, Praticò D (2010) Acceleration of brain amyloidosis in an Alzheimer’s disease mouse model by a folate, vitamin B6 and B12-deficient diet. Exp Gerontol 45(3):195–201CrossRefGoogle Scholar
  30. 30.
    Chan A, Tchantchou F, Graves V, Rozen R, Shea T (2008) Dietary and genetic compromise in folate availability reduces acetylcholine, cognitive performance and increases aggression: critical role of S-adenosyl methionine. J Nutr Health Aging 12(4):252–261CrossRefGoogle Scholar
  31. 31.
    Knock E, Deng L, Wu Q, Lawrance AK, Wang XL, Rozen R (2008) Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate. J Nutr 138(4):653–658CrossRefGoogle Scholar
  32. 32.
    McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S et al (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31(2):764–774CrossRefGoogle Scholar
  33. 33.
    De Jager PL, Srivastava G, Lunnon K, Burgess J, Schalkwyk LC, Yu L, Eaton ML, Keenan BT et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17(9):1156–1163CrossRefGoogle Scholar
  34. 34.
    Lipton SA, Kim W-K, Choi Y-B, Kumar S, D’Emilia DM, Rayudu PV, Arnelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci 94(11):5923–5928CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Li P, Feng J, Wu M (2016) Dysfunction of NMDA receptors in Alzheimer’s disease. Neurol Sci 37(7):1039–1047CrossRefGoogle Scholar
  36. 36.
    Chow VW, Mattson MP, Wong PC, Gleichmann M (2010) An overview of APP processing enzymes and products. NeuroMolecular Med 12(1):1–12CrossRefGoogle Scholar
  37. 37.
    Podcasy JL, Epperson CN (2016) Considering sex and gender in Alzheimer disease and other dementias. Dialogues Clin Neurosci 18(4):437PubMedPubMedCentralGoogle Scholar
  38. 38.
    Gilbody S, Lewis S, Lightfoot T (2007) Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 165(1):1–13CrossRefGoogle Scholar
  39. 39.
    Wang Y, Xu S, Cao Y, Xie Z, Lai C, Ji X, Bi J (2014) Folate deficiency exacerbates apoptosis by inducing hypomethylation and resultant overexpression of DR4 together with altering DNMTs in Alzheimer’s disease. Int J Clin Exp Med 7(8):1945–1957PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ghoshal K, Li X, Datta J, Bai S, Pogribny I, Pogribny M, Huang Y, Young D et al (2006) A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. J Nutr 136(6):1522–1527CrossRefGoogle Scholar
  41. 41.
    Ding Y, He J, Liu X, Chen X, Long C, Wang Y (2012) Expression of DNA methyltransferases in the mouse uterus during early pregnancy and susceptibility to dietary folate deficiency. Reproduction:REP-12-0006Google Scholar
  42. 42.
    Bottiglieri T, Godfrey P, Flynn T, Carney M, Toone B, Reynolds E (1990) Cerebrospinal fluid S-adenosylmethionine in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry 53(12):1096–1098CrossRefGoogle Scholar
  43. 43.
    Dayon L, Guiraud SP, Corthésy J, Da Silva L, Migliavacca E, Tautvydaitė D, Oikonomidi A, Moullet B et al (2017) One-carbon metabolism, cognitive impairment and CSF measures of Alzheimer pathology: homocysteine and beyond. Alzheimers Res Ther 9(1):43CrossRefGoogle Scholar
  44. 44.
    Morrison LD, Smith DD, Kish SJ (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem 67(3):1328–1331CrossRefGoogle Scholar
  45. 45.
    Sibani S, Melnyk S, Pogribny IP, Wang W, Hiou-Tim F, Deng L, Trasler J, James SJ et al (2002) Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis 23(1):61–65CrossRefGoogle Scholar
  46. 46.
    Knock E, Deng L, Krupenko N, Mohan RD, Wu Q, Leclerc D, Gupta S, Elmore CL et al (2011) Susceptibility to intestinal tumorigenesis in folate-deficient mice may be influenced by variation in one-carbon metabolism and DNA repair. J Nutr Biochem 22(11):1022–1029CrossRefGoogle Scholar
  47. 47.
    James SJ, Melnyk S, Pogribna M, Pogribny IP, Caudill MA (2002) Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J Nutr 132(8):2361S–2366SCrossRefGoogle Scholar
  48. 48.
    Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 22(3):242–251CrossRefGoogle Scholar
  49. 49.
    Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’anselmi F, Coluccia P, Calamandrei G, Scarpa S (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-β deposition in mice. Mol Cell Neurosci 37(4):731–746CrossRefGoogle Scholar
  50. 50.
    Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430CrossRefGoogle Scholar
  51. 51.
    Morris MJ, Adachi M, Na ES, Monteggia LM (2014) Selective role for DNMT3a in learning and memory. Neurobiol Learn Mem 115:30–37CrossRefGoogle Scholar
  52. 52.
    Shen W, Heeley JM, Carlston CM, Acuna-Hidalgo R, Nillesen WM, Dent KM, Douglas GV, Levine KL et al (2017) The spectrum of DNMT3A variants in Tatton–Brown–Rahman syndrome overlaps with that in hematologic malignancies. Am J Med Genet 173(11):3022–3028CrossRefGoogle Scholar
  53. 53.
    Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HW, Coleman PD et al (2013) Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients. Neurobiol Aging 34(9):2091–2099CrossRefGoogle Scholar
  54. 54.
    Volmar C-H, Wahlestedt C (2015) Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1:20–27CrossRefGoogle Scholar
  55. 55.
    Akchiche N, Bossenmeyer-Pourié C, Kerek R, Martin N, Pourié G, Koziel V, Helle D, Alberto J-M et al (2012) Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB J 26(10):3980–3992CrossRefGoogle Scholar
  56. 56.
    Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A (2013) Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimers Dis 33(1):35–44CrossRefGoogle Scholar
  57. 57.
    Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet 24(1):88–91CrossRefGoogle Scholar
  58. 58.
    Liu X, Luo M, Wu K (2012) Epigenetic interplay of histone modifications and DNA methylation mediated by HDA6. Plant Signal Behav 7(6):633–635CrossRefGoogle Scholar
  59. 59.
    Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, Schmeidler J et al (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760CrossRefGoogle Scholar
  60. 60.
    Scherer EB, Loureiro SO, Vuaden FC, da Cunha AA, Schmitz F, Kolling J, Savio LEB, Bogo MR et al (2014) Mild hyperhomocysteinemia increases brain acetylcholinesterase and proinflammatory cytokine levels in different tissues. Mol Neurobiol 50(2):589–596CrossRefGoogle Scholar
  61. 61.
    Hung S-Y, Fu W-M (2017) Drug candidates in clinical trials for Alzheimer’s disease. J Biomed Sci 24(1):47CrossRefGoogle Scholar
  62. 62.
    Colovic MB, Krstic DZ, Lazarevic-Pasti TD, Bondzic AM, Vasic VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335CrossRefGoogle Scholar
  63. 63.
    Whiley L, Sen A, Heaton J, Proitsi P, García-Gómez D, Leung R, Smith N, Thambisetty M et al (2014) Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging 35(2):271–278CrossRefGoogle Scholar
  64. 64.
    Haughey NJ, Bandaru VV, Bae M, Mattson MP (2010) Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis. Biochim Biophys Acta 1801(8):878–886CrossRefGoogle Scholar
  65. 65.
    Christensen KE, Wu Q, Wang X, Deng L, Caudill MA, Rozen R (2010) Steatosis in mice is associated with gender, folate intake, and expression of genes of one-carbon metabolism. J Nutr 140(10):1736–1741CrossRefGoogle Scholar
  66. 66.
    Bahous RH, Jadavji NM, Deng L, Cosín-Tomás M, Lu J, Malysheva O, Leung K-Y, Ho M-K et al (2017) High dietary folate in pregnant mice leads to pseudo-MTHFR deficiency and altered methyl metabolism, with embryonic growth delay and short-term memory impairment in offspring. Hum Mol Genet 26(5):888–900PubMedPubMedCentralGoogle Scholar
  67. 67.
    Mattson MP, Shea TB (2003) Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 26(3):137–146CrossRefGoogle Scholar
  68. 68.
    Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(7):S2–S9CrossRefGoogle Scholar
  69. 69.
    Selhub J, Troen A, Rosenberg IH (2010) B vitamins and the aging brain. Nutr Rev 68(suppl_2):S112–S118CrossRefGoogle Scholar
  70. 70.
    Hoffman A, Taleski G, Qian H, Wasek B, Arning E, Bottiglieri T, Sontag J-M, Sontag E (2018) Methylenetetrahydrofolate reductase deficiency deregulates regional brain amyloid-β protein precursor and phosphorylation levels. J Alzheimers Dis (Preprint) 1–15Google Scholar
  71. 71.
    Fuso A, Ferraguti G, Scarpa S, Ferrer I, Lucarelli M (2015) Disclosing bias in bisulfite assay: MethPrimers underestimate high DNA methylation. PLoS One 10(2):e0118318CrossRefGoogle Scholar
  72. 72.
    Nagata T, Kobayashi N, Ishii J, Shinagawa S, Nakayama R, Shibata N, Kuerban B, Ohnuma T et al (2015) Association between DNA methylation of the BDNF promoter region and clinical presentation in Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 5(1):64–73CrossRefGoogle Scholar
  73. 73.
    Zheng F, Zhou X, Moon C, Wang H (2012) Regulation of brain-derived neurotrophic factor expression in neurons. Int J Physiol Pathophysiol Pharmacol 4(4):188PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28(42):10576–10586CrossRefGoogle Scholar
  75. 75.
    McKinney BC, Lin C-W, Oh H, Tseng GC, Lewis DA, Sibille E (2015) Hypermethylation of BDNF and SST genes in the orbital frontal cortex of older individuals: a putative mechanism for declining gene expression with age. Neuropsychopharmacology 40(11):2604–2613CrossRefGoogle Scholar
  76. 76.
    Iwata A, Nagata K, Hatsuta H, Takuma H, Bundo M, Iwamoto K, Tamaoka A, Murayama S et al (2013) Altered CpG methylation in sporadic Alzheimer’s disease is associated with APP and MAPT dysregulation. Hum Mol Genet 23(3):648–656CrossRefGoogle Scholar
  77. 77.
    Eckart S, Hörtnagl H, Kronenberg G, Gertz K, Hörster H, Endres M, Hellweg R (2013) Reduced nerve growth factor levels in stress-related brain regions of folate-deficient mice. Neuroscience 245:129–135CrossRefGoogle Scholar
  78. 78.
    Poo M-M (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2(1):24CrossRefGoogle Scholar
  79. 79.
    Choi Y, Lee K, Ryu J, Kim HG, Jeong AY, Woo R-S, Lee J-H, Hyun JW et al (2014) Neuritin attenuates cognitive function impairments in Tg2576 Mouse Model of Alzheimer’s disease. PLoS One 9(8):e104121CrossRefGoogle Scholar
  80. 80.
    Troen AM, Shea-Budgell M, Shukitt-Hale B, Smith DE, Selhub J, Rosenberg IH (2008) B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci U S A 105(34):12474–12479CrossRefGoogle Scholar
  81. 81.
    Pourié G, Martin N, Bossenmeyer-Pourié C, Akchiche N, Guéant-Rodriguez RM, Geoffroy A, Jeannesson E, Chehadeh SEH et al (2015) Folate-and vitamin B12-deficient diet during gestation and lactation alters cerebellar synapsin expression via impaired influence of estrogen nuclear receptor α. FASEB J 29(9):3713–3725CrossRefGoogle Scholar
  82. 82.
    Craciunescu CN, Brown EC, Mar M-H, Albright CD, Nadeau MR, Zeisel SH (2004) Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. J Nutr 134(1):162–166CrossRefGoogle Scholar
  83. 83.
    Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N et al (2001) Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest 107(10):1263–1273CrossRefGoogle Scholar
  84. 84.
    Sudduth TL, Powell DK, Smith CD, Greenstein A, Wilcock DM (2013) Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J Cereb Blood Flow Metab 33(5):708–715CrossRefGoogle Scholar
  85. 85.
    Poirel O, Mella S, Videau C, Ramet L, Davoli MA, Herzog E, Katsel P, Mechawar N et al (2018) Moderate decline in select synaptic markers in the prefrontal cortex (BA9) of patients with Alzheimer’s disease at various cognitive stages. Sci Rep 8(1):938CrossRefGoogle Scholar
  86. 86.
    Drachman DA (2006) Aging of the brain, entropy, and Alzheimer disease. Neurology 67(8):1340–1352CrossRefGoogle Scholar
  87. 87.
    Crawley JN (2007) What’s wrong with my mouse? Behavioural phenotyping of transgenic and knockout mice, 2nd edn. John Wiley& Sons, Inc, New JerseyCrossRefGoogle Scholar
  88. 88.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):research0034CrossRefGoogle Scholar
  89. 89.
    Leclerc D, Cao Y, Deng L, Mikael LG, Wu Q, Rozen R (2013) Differential gene expression and methylation in the retinoid/PPARA pathway and of tumor suppressors may modify intestinal tumorigenesis induced by low folate in mice. Mol Nutr Food Res 57(4):686–697CrossRefGoogle Scholar
  90. 90.
    Luttropp K, Sjöholm LK, Ekström TJ (2015) Global analysis of DNA 5-methylcytosine using the luminometric methylation assay, LUMA. Methods Mol Biol 1315:209–219CrossRefGoogle Scholar
  91. 91.
    Christensen KE, Mikael LG, Leung KY, Levesque N, Deng L, Wu Q, Malysheva OV, Best A et al (2015) High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr 101(3):646–658.  https://doi.org/10.3945/ajcn.114.086603 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Yan J, Jiang X, West AA, Perry CA, Malysheva OV, Devapatla S, Pressman E, Vermeylen F et al (2012) Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr 95(5):1060–1071CrossRefGoogle Scholar
  93. 93.
    Holm PI, Ueland PM, Kvalheim G, Lien EA (2003) Determination of choline, betaine, and dimethylglycine in plasma by a high-throughput method based on normal-phase chromatography-tandem mass spectrometry. Clin Chem 49(2):286–294CrossRefGoogle Scholar
  94. 94.
    Koc H, Mar MH, Ranasinghe A, Swenberg JA, Zeisel SH (2002) Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry. Anal Chem 74(18):4734–4740CrossRefGoogle Scholar
  95. 95.
    Kim JK, Harada K, Bamba T, Fukusaki E, Kobayashi A (2005) Stable isotope dilution-based accurate comparative quantification of nitrogen-containing metabolites in Arabidopsis thaliana T87 cells using in vivo (15)N-isotope enrichment. Biosci Biotechnol Biochem 69(7):1331–1340CrossRefGoogle Scholar
  96. 96.
    Jadavji NM, Bahous RH, Deng L, Malysheva O, Grand’maison M, Bedell BJ, Caudill MA, Rozen R (2014) Mouse model for deficiency of methionine synthase reductase exhibits short-term memory impairment and disturbances in brain choline metabolism. Biochem J 461(2):205–212.  https://doi.org/10.1042/BJ20131568 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Renata H. Bahous
    • 1
  • Marta Cosín-Tomás
    • 1
  • Liyuan Deng
    • 1
  • Daniel Leclerc
    • 1
  • Olga Malysheva
    • 2
  • Ming-Kai Ho
    • 3
  • Mercè Pallàs
    • 4
  • Perla Kaliman
    • 5
  • Barry J. Bedell
    • 3
  • Marie A. Caudill
    • 2
  • Rima Rozen
    • 1
  1. 1.Departments of Human Genetics and PediatricsResearch Institute of the McGill University Health CentreMontrealCanada
  2. 2.Division of Nutritional Sciences and GenomicsCornell UniversityIthacaUSA
  3. 3.Department of Neurology and NeurosurgeryMcGill UniversityMontrealCanada
  4. 4.Pharmacology Unit, Faculty of Pharmacy, Institut de Neurociència Universitat de Barcelona (IBUB)Nucli Universitari de PedralbesBarcelonaSpain
  5. 5.Institute of Biomedical Investigation of BarcelonaSpanish National Research CouncilBarcelonaSpain

Personalised recommendations