Advertisement

Methamphetamine (MA) Use Induces Specific Changes in LINE-1 Partial Methylation Patterns, Which Are Associated with MA-Induced Paranoia: a Multivariate and Neuronal Network Study

  • Rasmon Kalayasiri
  • Korakot Kraijak
  • Michael Maes
  • Apiwat Mutirangura
Article

Abstract

The use of psychoactive substances, including methamphetamine (MA) may cause changes in DNA methylation. The aim of this study was to examine the effects of MA use on long interspersed element-1 (LINE-1) methylation patterns in association with MA-induced paranoia. This study recruited 123 normal controls and 974 MA users, 302 with and 672 without MA-induced paranoia. The Semi-Structured Assessment for Drug Dependence and Alcoholism was used to assess demographic and substance use variables. Patterns of LINE-1 methylation were assessed in peripheral blood mononuclear cells and a combined bisulfite restriction analysis (COBRA) was used to estimate overall LINE-1 methylation (mC) while COBRA classified LINE-alleles into four patterns based on the methylation status of two CpG dinucleotides on each strand from 5′ to 3′, namely two methylated (mCmC) and two unmethylated (uCuC) CpGs and two types of partially methylated loci (mCuC that is 5′m with 3′u and uCmC that is 5′u with 3′m CpGs). MA users showed higher % mCuC and % mCuC + uCmC levels than controls. Use of solvents and opioids, but not cannabis and alcohol dependence, significantly lowered % uCmC levels, while current smoking significantly increased % uCuC levels. MA-induced paranoia was strongly associated with changes in LINE-1 partial methylation patterns (lowered % uCmC), heavy MA use, lower age at onset of MA use, and alcohol dependence. Women who took contraceptives showed significantly lower LINE-1 % mC and % mCmC and higher % uCuC levels than women without contraceptive use and men. The results show that MA-induced changes in LINE-1 partial methylation patterns are associated with MA-induced paranoia and could explain in part the pathophysiology of this type of psychosis. It is argued that MA-induced neuro-oxidative pathways may have altered LINE-1 partial methylation patterns, which in turn may regulate neuro-oxidative and immune pathways, which may increase risk to develop MA-induced paranoia.

Keywords

Methamphetamine DNA methylation Schizophrenia Paranoia Immune Inflammation BMI Sex 

Notes

Acknowledgements

We thank Mr. Prakasit Rattanatanyong and Dr. Nakarin Kitkumthorn for the excellent technical support in the laboratory. We appreciate Ms. Maturada Phetsung and Ms. Sirapat Settayanon for the help on the laboratory work.

Author Contributions

All authors contributed to interpretation of the data and writing of the manuscript.

Funding

This research has been supported by National Science and Technology Development Agency (NSTDA), Thailand (A.M.). RK is supported by the Center for Alcohol Studies, Thailand, and by the Fogarty International Center of the National Institutes of Health (NIH) under the subaward of D43TW009087 (Yale University School of Medicine (Joel Gelernter, M.D. and Robert T. Malison, M.D.). This funding source had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    National Institute on Drug Abuse (2007) Drugs, brains, and behavior: the science of addiction. Revised August 2010 edn. NIH Pub No. 10-5605Google Scholar
  2. 2.
    Rasmussen N (2008) America’s first amphetamine epidemic 1929-1971: a quantitative and qualitative retrospective with implications for the present. Am J Public Health 98(6):974–985.  https://doi.org/10.2105/AJPH.2007.110593 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    National Institute on Drug Abuse (2013) NIDA research report series: methamphetamine. Revised September 2013 edn. NIH Publication Number 13-4210Google Scholar
  4. 4.
    Drug Enforcement Administration (2017) Drugs of abuse: a DEA resource guide. Drug Enforcement Administration, U.S. Department of JusticeGoogle Scholar
  5. 5.
    United Nations Office on Drugs and Crime (2017) World drug report 2017. United Nations Publication, ViennaGoogle Scholar
  6. 6.
    Kalayasiri R (2016) Facts & figures: illegal substances in Thailand. Thailand Substance Abuse Academic Network (TSAAN), SongkhlaGoogle Scholar
  7. 7.
    Kalayasiri R (2016) Addiction in Thailand. In: Preedy VR (ed) Neuropathology of drug addictions and substance misuse, vol 2. Stimulants, club and dissociative drugs, hallucinogens, steroids, inhalants, and international aspects. Academic Press, London, pp. 1094–1100Google Scholar
  8. 8.
    Vasan S, Olango GJ (2018) Toxicity, amphetamine. In: StatPearls. Treasure Island (FL)Google Scholar
  9. 9.
    Prakash MD, Tangalakis K, Antonipillai J, Stojanovska L, Nurgali K, Apostolopoulos V (2017) Methamphetamine: effects on the brain, gut and immune system. Pharmacol Res 120:60–67.  https://doi.org/10.1016/j.phrs.2017.03.009 CrossRefPubMedGoogle Scholar
  10. 10.
    Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW et al (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24(26):6028–6036.  https://doi.org/10.1523/JNEUROSCI.0713-04.2004 CrossRefPubMedGoogle Scholar
  11. 11.
    Scott JC, Woods SP, Matt GE, Meyer RA, Heaton RK, Atkinson JH, Grant I (2007) Neurocognitive effects of methamphetamine: a critical review and meta-analysis. Neuropsychol Rev 17(3):275–297.  https://doi.org/10.1007/s11065-007-9031-0 CrossRefPubMedGoogle Scholar
  12. 12.
    Glasner-Edwards S, Mooney LJ (2014) Methamphetamine psychosis: epidemiology and management. CNS Drugs 28(12):1115–1126.  https://doi.org/10.1007/s40263-014-0209-8 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hsieh JH, Stein DJ, Howells FM (2014) The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci 8:537.  https://doi.org/10.3389/fnhum.2014.00537 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kalayasiri R, Verachai V, Gelernter J, Mutirangura A, Malison RT (2014) Clinical features of methamphetamine-induced paranoia and preliminary genetic association with DBH-1021C-->T in a Thai treatment cohort. Addiction 109(6):965–976.  https://doi.org/10.1111/add.12512 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kalayasiri R, Mutirangura A, Verachai V, Gelernter J, Malison RT (2009) Risk factors for methamphetamine-induced paranoia and latency of symptom onset in a Thai drug treatment cohort. Asian Biomed (Res Rev News) 3(6):635–643Google Scholar
  16. 16.
    World Health Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical description and diagnostic guidelines. World Health Organization, GenevaGoogle Scholar
  17. 17.
    Schmidt HD, McGinty JF, West AE, Sadri-Vakili G (2013) Epigenetics and psychostimulant addiction. Cold Spring Harb Perspect Med 3(3):a012047.  https://doi.org/10.1101/cshperspect.a012047 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2(Suppl 1):S4–S11.  https://doi.org/10.1038/ncponc0354 CrossRefGoogle Scholar
  19. 19.
    Kitkumthorn N, Mutirangura A (2011) Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin Epigenetics 2(2):315–330.  https://doi.org/10.1007/s13148-011-0032-8 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21.  https://doi.org/10.1101/gad.947102 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kemp JR, Longworth MS (2015) Crossing the LINE toward genomic instability: LINE-1 retrotransposition in cancer. Front Chem 3:68.  https://doi.org/10.3389/fchem.2015.00068 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chalitchagorn K, Shuangshoti S, Hourpai N, Kongruttanachok N, Tangkijvanich P, Thong-ngam D, Voravud N, Sriuranpong V et al (2004) Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene 23(54):8841–8846.  https://doi.org/10.1038/sj.onc.1208137 CrossRefPubMedGoogle Scholar
  23. 23.
    Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M, Papritz M, Hattenhorst UE, Hofmann HS, Silber RE et al (2005) CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer 41(8):1223–1236.  https://doi.org/10.1016/j.ejca.2005.02.020 CrossRefPubMedGoogle Scholar
  24. 24.
    Numachi Y, Shen H, Yoshida S, Fujiyama K, Toda S, Matsuoka H, Sora I, Sato M (2007) Methamphetamine alters expression of DNA methyltransferase 1 mRNA in rat brain. Neurosci Lett 414(3):213–217.  https://doi.org/10.1016/j.neulet.2006.12.052 CrossRefPubMedGoogle Scholar
  25. 25.
    Godino A, Jayanthi S, Cadet JL (2015) Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 10(7):574–580.  https://doi.org/10.1080/15592294.2015.1055441 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Moszczynska A, Flack A, Qiu P, Muotri AR, Killinger BA (2015) Neurotoxic methamphetamine doses increase LINE-1 expression in the neurogenic zones of the adult rat brain. Sci Rep 5:14356.  https://doi.org/10.1038/srep14356 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Okudaira N, Ishizaka Y, Nishio H (2014) Retrotransposition of long interspersed element 1 induced by methamphetamine or cocaine. J Biol Chem 289(37):25476–25485.  https://doi.org/10.1074/jbc.M114.559419 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Salo R, Flower K, Kielstein A, Leamon MH, Nordahl TE, Galloway GP (2011) Psychiatric comorbidity in methamphetamine dependence. Psychiatry Res 186(2–3):356–361CrossRefGoogle Scholar
  29. 29.
    Intharachuti W, Ittiwut R, Listman J, Verachai V, Mutirangura A, Malison RT, Kalayasiri R (2012) Polymorphism of COMT Val158Met is associated with inhalant use and dependence: a Thai substance dependence treatment cohort. Asian Biomed (Res Rev News) 6(4):549–556Google Scholar
  30. 30.
    Wang Z, Bao Y, Yan S, Lian Z, Jia Z, Liu Z (2014) An investigation of cigarettes smoking behavior and nicotine dependence among Chinese methamphetamine users in two provinces. Biomed Res Int 2014:175205.  https://doi.org/10.1155/2014/175205 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Weinberger AH, Sofuoglu M (2009) The impact of cigarette smoking on stimulant addiction. Am J Drug Alcohol Abuse 35(1):12–17.  https://doi.org/10.1080/00952990802326280 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yimsaard P, Maes MM, Verachai V, Kalayasiri R (2018) Pattern of methamphetamine use and the time lag to methamphetamine dependence. J Addict Med 12(2):92–98.  https://doi.org/10.1097/ADM.0000000000000371 CrossRefPubMedGoogle Scholar
  33. 33.
    Tsaprouni LG, Yang TP, Bell J, Dick KJ, Kanoni S, Nisbet J, Vinuela A, Grundberg E et al (2014) Cigarette smoking reduces DNA methylation levels at multiple genomic loci but the effect is partially reversible upon cessation. Epigenetics 9(10):1382–1396.  https://doi.org/10.4161/15592294.2014.969637 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wangsri S, Subbalekha K, Kitkumthorn N, Mutirangura A (2012) Patterns and possible roles of LINE-1 methylation changes in smoke-exposed epithelia. PLoS One 7(9):e45292.  https://doi.org/10.1371/journal.pone.0045292 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brown AN, Feng J (2017) Drug addiction and DNA modifications. Adv Exp Med Biol 978:105–125.  https://doi.org/10.1007/978-3-319-53889-1_6 CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang R, Miao Q, Wang C, Zhao R, Li W, Haile CN, Hao W, Zhang XY (2013) Genome-wide DNA methylation analysis in alcohol dependence. Addict Biol 18(2):392–403.  https://doi.org/10.1111/adb.12037 CrossRefPubMedGoogle Scholar
  37. 37.
    Fenga C, Gangemi S, Costa C (2016) Benzene exposure is associated with epigenetic changes (review). Mol Med Rep 13(4):3401–3405.  https://doi.org/10.3892/mmr.2016.4955 CrossRefPubMedGoogle Scholar
  38. 38.
    Jiang R, Jones MJ, Sava F, Kobor MS, Carlsten C (2014) Short-term diesel exhaust inhalation in a controlled human crossover study is associated with changes in DNA methylation of circulating mononuclear cells in asthmatics. Part Fibre Toxicol 11:71.  https://doi.org/10.1186/s12989-014-0071-3 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Watson CT, Szutorisz H, Garg P, Martin Q, Landry JA, Sharp AJ, Hurd YL (2015) Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40(13):2993–3005.  https://doi.org/10.1038/npp.2015.155 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Byrnes JJ, Johnson NL, Schenk ME, Byrnes EM (2012) Cannabinoid exposure in adolescent female rats induces transgenerational effects on morphine conditioned place preference in male offspring. J Psychopharmacol 26(10):1348–1354.  https://doi.org/10.1177/0269881112443745 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Vassoler FM, Johnson NL, Byrnes EM (2013) Female adolescent exposure to cannabinoids causes transgenerational effects on morphine sensitization in female offspring in the absence of in utero exposure. J Psychopharmacol 27(11):1015–1022.  https://doi.org/10.1177/0269881113503504 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Renthal W, Nestler EJ (2008) Epigenetic mechanisms in drug addiction. Trends Mol Med 14(8):341–350.  https://doi.org/10.1016/j.molmed.2008.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chen CK, Lin SK, Sham PC, Ball D, Loh W, Hsiao CC, Chiang YL, Ree SC et al (2003) Pre-morbid characteristics and co-morbidity of methamphetamine users with and without psychosis. Psychol Med 33(8):1407–1414CrossRefGoogle Scholar
  44. 44.
    Malison RT, Kalayasiri R, Sanichwankul K, Sughondhabirom A, Mutirangura A, Pittman B, Gueorguieva R, Kranzler HR et al (2011) Inter-rater reliability and concurrent validity of DSM-IV opioid dependence in a Hmong isolate using the Thai version of the Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA). Addict Behav 36(1–2):156–160CrossRefGoogle Scholar
  45. 45.
    American Psychiatric Association (ed) (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, D.C.Google Scholar
  46. 46.
    Kitkumthorn N, Keelawat S, Rattanatanyong P, Mutirangura A (2012) LINE-1 and Alu methylation patterns in lymph node metastases of head and neck cancers. Asian Pac J Cancer Prev 13(9):4469–4475CrossRefGoogle Scholar
  47. 47.
    Nielsen SS, Checkoway H, Butler RA, Nelson HH, Farin FM, Longstreth WT, Franklin GM, Swanson PD et al (2012) LINE-1 DNA methylation, smoking and risk of Parkinson’s disease. Journal of Parkinson’s Disease 2(4):303–308.  https://doi.org/10.3233/JPD-012129 CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Marques-Rocha JL, Milagro FI, Mansego ML, Mourao DM, Martinez JA, Bressan J (2016) LINE-1 methylation is positively associated with healthier lifestyle but inversely related to body fat mass in healthy young individuals. Epigenetics 11(1):49–60.  https://doi.org/10.1080/15592294.2015.1135286 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Doehring A, Oertel BG, Sittl R, Lotsch J (2013) Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain 154(1):15–23.  https://doi.org/10.1016/j.pain.2012.06.011 CrossRefPubMedGoogle Scholar
  50. 50.
    Trivedi M, Shah J, Hodgson N, Byun HM, Deth R (2014) Morphine induces redox-based changes in global DNA methylation and retrotransposon transcription by inhibition of excitatory amino acid transporter type 3-mediated cysteine uptake. Mol Pharmacol 85(5):747–757.  https://doi.org/10.1124/mol.114.091728 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Knothe C, Oertel BG, Ultsch A, Kettner M, Schmidt PH, Wunder C, Toennes SW, Geisslinger G et al (2016) Pharmacoepigenetics of the role of DNA methylation in mu-opioid receptor expression in different human brain regions. Epigenomics 8(12):1583–1599.  https://doi.org/10.2217/epi-2016-0072 CrossRefPubMedGoogle Scholar
  52. 52.
    Zhang H, Gelernter J (2017) Review: DNA methylation and alcohol use disorders: progress and challenges. Am J Addict 26(5):502–515.  https://doi.org/10.1111/ajad.12465 CrossRefPubMedGoogle Scholar
  53. 53.
    Szutorisz H, Hurd YL (2016) Epigenetic effects of cannabis exposure. Biol Psychiatry 79(7):586–594.  https://doi.org/10.1016/j.biopsych.2015.09.014 CrossRefPubMedGoogle Scholar
  54. 54.
    Liu J, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, Bustillo J, Turner JA et al (2014) Methylation patterns in whole blood correlate with symptoms in schizophrenia patients. Schizophr Bull 40(4):769–776.  https://doi.org/10.1093/schbul/sbt080 CrossRefPubMedGoogle Scholar
  55. 55.
    El-Maarri O, Walier M, Behne F, van Uum J, Singer H, Diaz-Lacava A, Nusgen N, Niemann B et al (2011) Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS One 6(1):e16252.  https://doi.org/10.1371/journal.pone.0016252 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Turcot V, Tchernof A, Deshaies Y, Perusse L, Belisle A, Marceau S, Biron S, Lescelleur O et al (2012) LINE-1 methylation in visceral adipose tissue of severely obese individuals is associated with metabolic syndrome status and related phenotypes. Clin Epigenetics 4(1):10–18.  https://doi.org/10.1186/1868-7083-4-10 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Cho YH, Woo HD, Jang Y, Porter V, Christensen S, Hamilton RF Jr, Chung HW (2015) The association of LINE-1 hypomethylation with age and centromere positive micronuclei in human lymphocytes. PLoS One 10(7):e0133909.  https://doi.org/10.1371/journal.pone.0133909 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Teroganova N, Girshkin L, Suter CM, Green MJ (2016) DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: a systematic review. BMC Genet 17:27.  https://doi.org/10.1186/s12863-016-0332-2 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Callaghan RC, Cunningham JK, Allebeck P, Arenovich T, Sajeev G, Remington G, Boileau I, Kish SJ (2012) Methamphetamine use and schizophrenia: a population-based cohort study in California. Am J Psychiatry 169(4):389–396.  https://doi.org/10.1176/appi.ajp.2011.10070937 CrossRefPubMedGoogle Scholar
  60. 60.
    Leamon MH, Flower K, Salo RE, Nordahl TE, Kranzler HR, Galloway GP (2010) Methamphetamine and paranoia: the methamphetamine experience questionnaire. Am J Addict 19(2):155–168CrossRefGoogle Scholar
  61. 61.
    Grant KM, LeVan TD, Wells SM, Li M, Stoltenberg SF, Gendelman HE, Carlo G, Bevins RA (2012) Methamphetamine-associated psychosis. J NeuroImmune Pharmacol 7(1):113–139CrossRefGoogle Scholar
  62. 62.
    Marconi A, Di Forti M, Lewis CM, Murray RM, Vassos E (2016) Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr Bull 42(5):1262–1269.  https://doi.org/10.1093/schbul/sbw003 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Caspi A, Moffitt TE, Cannon M, McClay J, Murray R, Harrington H, Taylor A, Arseneault L et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57(10):1117–1127.  https://doi.org/10.1016/j.biopsych.2005.01.026 CrossRefPubMedGoogle Scholar
  64. 64.
    Kalayasiri R, Gelernter J, Farrer L, Weiss R, Brady K, Gueorguieva R, Kranzler HR, Malison RT (2009) Adolescent cannabis use increases risk for cocaine-induced paranoia. Drug Alcohol Depend 107(2–3):196–201PubMedPubMedCentralGoogle Scholar
  65. 65.
    Lv D, Zhang M, Jin X, Zhao J, Han B, Su H, Zhang J, Zhang X et al (2016) The body mass index, blood pressure, and fasting blood glucose in patients with methamphetamine dependence. Medicine (Baltimore) 95(12):e3152.  https://doi.org/10.1097/MD.0000000000003152 CrossRefGoogle Scholar
  66. 66.
    Kanchanatawan B, Sriswasdi S, Thika S, Stoyanov D, Sirivichayakul S, Carvalho AF, Geffard M, Maes M (2018) Towards a new classification of stable phase schizophrenia into major and simple NEURO-cognitive psychosis: results of unsupervised machine learning analysis. J Eval Clin PractGoogle Scholar
  67. 67.
    Hebebrand J, Peters T, Schijven D, Hebebrand M, Grasemann C, Winkler TW, Heid IM, Antel J et al (2018) The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Mol Metab.  https://doi.org/10.1016/j.molmet.2018.03.015 CrossRefGoogle Scholar
  68. 68.
    Smith RS, Maes M (1995) The macrophage-T-lymphocyte theory of schizophrenia: additional evidence. Med Hypotheses 45(2):135–141CrossRefGoogle Scholar
  69. 69.
    Anderson G, Maes M (2013) Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuro-Psychopharmacol Biol Psychiatry 42:5–19.  https://doi.org/10.1016/j.pnpbp.2012.06.014 CrossRefGoogle Scholar
  70. 70.
    Davis J, Eyre H, Jacka FN, Dodd S, Dean O, McEwen S, Debnath M, McGrath J et al (2016) A review of vulnerability and risks for schizophrenia: beyond the two hit hypothesis. Neurosci Biobehav Rev 65:185–194.  https://doi.org/10.1016/j.neubiorev.2016.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Solhi H, Malekirad A, Kazemifar AM, Sharifi F (2014) Oxidative stress and lipid peroxidation in prolonged users of methamphetamine. Drug Metab Lett 7(2):79–82CrossRefGoogle Scholar
  72. 72.
    Kloypan C, Srisa-art M, Mutirangura A, Boonla C (2015) LINE-1 hypomethylation induced by reactive oxygen species is mediated via depletion of S-adenosylmethionine. Cell Biochem Funct 33(6):375–385.  https://doi.org/10.1002/cbf.3124 CrossRefPubMedGoogle Scholar
  73. 73.
    Aporntewan C, Phokaew C, Piriyapongsa J, Ngamphiw C, Ittiwut C, Tongsima S, Mutirangura A (2011) Hypomethylation of intragenic LINE-1 represses transcription in cancer cells through AGO2. PLoS One 6(3):e17934.  https://doi.org/10.1371/journal.pone.0017934 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Pornthanakasem W, Kongruttanachok N, Phuangphairoj C, Suyarnsestakorn C, Sanghangthum T, Oonsiri S, Ponyeam W, Thanasupawat T et al (2008) LINE-1 methylation status of endogenous DNA double-strand breaks. Nucleic Acids Res 36(11):3667–3675.  https://doi.org/10.1093/nar/gkn261 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Wanichnopparat W, Suwanwongse K, Pin-On P, Aporntewan C, Mutirangura A (2013) Genes associated with the cis-regulatory functions of intragenic LINE-1 elements. BMC Genomics 14:205–209.  https://doi.org/10.1186/1471-2164-14-205 CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tangsuwansri C, Saeliw T, Thongkorn S, Chonchaiya W, Suphapeetiporn K, Mutirangura A, Tencomnao T, Hu VW et al (2018) Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses. PLoS One 13(7):e0201071.  https://doi.org/10.1371/journal.pone.0201071 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Psychiatry, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  2. 2.Department of PsychiatryKing Chulalongkorn Memorial HospitalBangkokThailand
  3. 3.Center for Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  4. 4.Master of Science Program in Medical Science, Faculty of MedicineChulalongkorn UniversityBangkokThailand
  5. 5.IMPACT Strategic Research Center; Barwon HealthDeakin UniversityGeelongAustralia

Personalised recommendations