AMPK Activation of PGC-1α/NRF-1-Dependent SELENOT Gene Transcription Promotes PACAP-Induced Neuroendocrine Cell Differentiation Through Tolerance to Oxidative Stress

  • Houssni Abid
  • Dorthe Cartier
  • Abdallah Hamieh
  • Anne-Marie François-Bellan
  • Christine Bucharles
  • Hugo Pothion
  • Destiny-Love Manecka
  • Jérôme Leprince
  • Sahil Adriouch
  • Olivier Boyer
  • Youssef Anouar
  • Isabelle LihrmannEmail author


Several cues including pituitary adenylate cyclase-activating polypeptide (PACAP), which acts through cAMP stimulation, specify the conversion of sympathoadrenal (SA) precursors toward different cell phenotypes by promoting their survival and differentiation. Selenoprotein T (SELENOT) is a PACAP-stimulated ER oxidoreductase that exerts an essential antioxidant activity and whose up-regulation is associated with SA cell differentiation. In the present study, we investigated the transcriptional cascade elicited by PACAP/cAMP to trigger SELENOT gene transcription during the conversion of PC12 cells from SA progenitor-like cells toward a neuroendocrine phenotype. Unexpectedly, we found that PACAP/cAMP recruits the canonical pathway that regulates mitochondrial function in order to elicit SELENOT gene transcription and the consequent antioxidant response during PC12 cell differentiation. This cascade involves LKB1-mediated AMPK activation in order to stimulate SELENOT gene transcription through the PGC1-α/NRF-1 complex, thus allowing SELENOT to promote PACAP-stimulated neuroendocrine cell survival and differentiation. Our data reveal that a PACAP and cAMP-activated AMPK-PGC-1α/NRF-1 cascade is critical for the coupling of oxidative stress tolerance, via SELENOT gene expression, and mitochondrial biogenesis in order to achieve PC12 cell differentiation. The data further highlight the essential role of SELENOT in cell metabolism during differentiation.


cAMP PGC-1α NRF-1 Mitochondriogenesis Oxidative stress 


Author Contributions

I.L. and Y.A. designed the experiments. H.A., D.C, A.H., A-M.F-B., C.B., H.P., D-L.M. and A.S. performed the experiments; J.L. and O.B. helped to analyze the data, I.L. and Y.A. wrote the manuscript.


This work was supported by Inserm (U1239), the Conseil Régional de Normandie, the University of Rouen Normandie and the European Union. Europe is involved in Normandie with European Regional Development Fund (ERDF).

Compliance with Ethical Standards

Competing Interests

The authors declare they have no competing interest.

Supplementary material

12035_2018_1352_MOESM1_ESM.doc (64 kb)
ESM 1 (DOC 64.5 kb)
12035_2018_1352_MOESM2_ESM.pdf (23 kb)
ESM 2 (PDF 23.4 kb)


  1. 1.
    Francis NJ, Landis SC (1999) Cellular and molecular determinants of sympathetic neuron development. Annu Rev Neurosci 22:541–566. CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson DJ (1993) Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu Rev Neurosci 16:129–158. CrossRefPubMedGoogle Scholar
  3. 3.
    Huber K (2006) The sympathoadrenal cell lineage: specification, diversification, and new perspectives. Dev Biol 298:335–343. CrossRefPubMedGoogle Scholar
  4. 4.
    Emery AC, Eiden MV, Eiden LE (2014) Separate cyclic AMP sensors for neuritogenesis, growth arrest, and survival of neuroendocrine cells. J Biol Chem 289:10126–10139. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ravni A, Bourgault S, Lebon A, Chan P, Galas L, Fournier A, Vaudry H, Gonzalez B et al (2006) The neurotrophic effects of PACAP in PC12 cells: control by multiple transduction pathways. J Neurochem 98:321–329. CrossRefPubMedGoogle Scholar
  6. 6.
    Grumolato L, Louiset E, Alexandre D, Ait-Ali D, Turquier V, Fournier A, Fasolo A, Vaudry H et al (2003) PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage: effects on electrical properties, gene markers and transcription factors in differentiating PC12 cells. Eur J Neurosci 17:71–82CrossRefGoogle Scholar
  7. 7.
    Ghzili H, Grumolato L, Thouennon E, Vaudry H, Anouar Y (2006) Possible implication of the transcriptional regulator Id3 in PACAP-induced pro-survival signaling during PC12 cell differentiation. Regul Pept 137:89–94. CrossRefPubMedGoogle Scholar
  8. 8.
    Hamelink C, Tjurmina O, Damadzic R, Young WS, Weihe E, Lee HW, Eiden LE (2002) Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci U S A 99:461–466. CrossRefPubMedGoogle Scholar
  9. 9.
    Deutsch PJ, Sun Y (1992) The 38-amino acid form of pituitary adenylate cyclase-activating polypeptide stimulates dual signaling cascades in PC12 cells and promotes neurite outgrowth. J Biol Chem 267:5108–5113PubMedGoogle Scholar
  10. 10.
    Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428CrossRefGoogle Scholar
  11. 11.
    Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2001) Chromogranin A, an “on/off” switch controlling dense-core secretory granule biogenesis. Cell 106:499–509CrossRefGoogle Scholar
  12. 12.
    Montero-Hadjadje M, Vaingankar S, Elias S, Tostivint H, Mahata SK, Anouar Y (2008) Chromogranins A and B and secretogranin II: evolutionary and functional aspects. Acta Physiol (Oxf) 192:309–324. CrossRefGoogle Scholar
  13. 13.
    Grumolato L, Ghzili H, Montero-Hadjadje M, Gasman S, Lesage J, Tanguy Y, Galas L, Ait-Ali D et al (2008) Selenoprotein T is a PACAP-regulated gene involved in intracellular Ca2+ mobilization and neuroendocrine secretion. FASEB J 22:1756–1768. CrossRefPubMedGoogle Scholar
  14. 14.
    Hamieh A, Cartier D, Abid H, Calas A, Burel C, Bucharles C, Jehan C, Grumolato L et al (2017) Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion. EMBO Rep 18:1935–1946. CrossRefPubMedGoogle Scholar
  15. 15.
    Boukhzar L, Hamieh A, Cartier D, Tanguy Y, Alsharif I, Castex M, Arabo A, El Hajji S et al (2016) Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of Parkinson’s disease. Antioxid Redox Signal 24:557–574. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Castex MT, Arabo A, Benard M, Roy V, Le Joncour V, Prevost G, Bonnet JJ, Anouar Y et al (2016) Selenoprotein T deficiency leads to neurodevelopmental abnormalities and hyperactive behavior in mice. Mol Neurobiol 53:5818–5832. CrossRefPubMedGoogle Scholar
  17. 17.
    Tanguy Y, Falluel-Morel A, Arthaud S, Boukhzar L, Manecka DL, Chagraoui A, Prevost G, Elias S et al (2011) The PACAP-regulated gene selenoprotein T is highly induced in nervous, endocrine, and metabolic tissues during ontogenetic and regenerative processes. Endocrinology 152:4322–4335. CrossRefPubMedGoogle Scholar
  18. 18.
    Anouar Y, Lihrmann I, Falluel-Morel A, Boukhzar L (2018) Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic Biol Med. CrossRefGoogle Scholar
  19. 19.
    Prevost G, Arabo A, Jian L, Quelennec E, Cartier D, Hassan S, Falluel-Morel A, Tanguy Y et al (2013) The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human beta-cells and its targeted inactivation impairs glucose tolerance. Endocrinology 154:3796–3806. CrossRefPubMedGoogle Scholar
  20. 20.
    Rabinovitch RC, Samborska B, Faubert B, Ma EH, Gravel SP, Andrzejewski S, Raissi TC, Pause A et al (2017) AMPK maintains cellular metabolic homeostasis through regulation of mitochondrial reactive oxygen species. Cell Rep 21:1–9. CrossRefPubMedGoogle Scholar
  21. 21.
    Botia B, Seyer D, Ravni A, Benard M, Falluel-Morel A, Cosette P, Jouenne T, Fournier A et al (2008) Peroxiredoxin 2 is involved in the neuroprotective effects of PACAP in cultured cerebellar granule neurons. J Mol Neurosci 36:61–72. CrossRefPubMedGoogle Scholar
  22. 22.
    Grumolato L, Elkahloun AG, Ghzili H, Alexandre D, Coulouarn C, Yon L, Salier JP, Eiden LE et al (2003) Microarray and suppression subtractive hybridization analyses of gene expression in pheochromocytoma cells reveal pleiotropic effects of pituitary adenylate cyclase-activating polypeptide on cell proliferation, survival, and adhesion. Endocrinology 144:2368–2379. CrossRefPubMedGoogle Scholar
  23. 23.
    Miyamoto K, Tsumuraya T, Ohtaki H, Dohi K, Satoh K, Xu Z, Tanaka S, Murai N et al (2014) PACAP38 suppresses cortical damage in mice with traumatic brain injury by enhancing antioxidant activity. J Mol Neurosci 54:370–379. CrossRefPubMedGoogle Scholar
  24. 24.
    Ohtaki H, Satoh A, Nakamachi T, Yofu S, Dohi K, Mori H, Ohara K, Miyamoto K et al (2010) Regulation of oxidative stress by pituitary adenylate cyclase-activating polypeptide (PACAP) mediated by PACAP receptor. J Mol Neurosci 42:397–403. CrossRefPubMedGoogle Scholar
  25. 25.
    Satoh J, Kawana N, Yamamoto Y (2013) Pathway analysis of ChIP-Seq-based NRF1 target genes suggests a logical hypothesis of their involvement in the pathogenesis of neurodegenerative diseases. Gene Regul Syst Bio 7:139–152. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Scarpulla RC, Vega RB, Kelly DP (2012) Transcriptional integration of mitochondrial biogenesis. Trends Endocrinol Metab 23:459–466. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Virbasius CA, Virbasius JV, Scarpulla RC (1993) NRF-1, an activator involved in nuclear-mitochondrial interactions, utilizes a new DNA-binding domain conserved in a family of developmental regulators. Genes Dev 7:2431–2445CrossRefGoogle Scholar
  28. 28.
    Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124. CrossRefPubMedGoogle Scholar
  29. 29.
    Knutti D, Kralli A (2001) PGC-1, a versatile coactivator. Trends Endocrinol Metab 12:360–365CrossRefGoogle Scholar
  30. 30.
    St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K et al (2006) Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397–408. CrossRefPubMedGoogle Scholar
  31. 31.
    Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO (2007) Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem 282:194–199. CrossRefPubMedGoogle Scholar
  32. 32.
    Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93:884S–8890S. CrossRefGoogle Scholar
  33. 33.
    Austin S, St-Pierre J (2012) PGC1alpha and mitochondrial metabolism—emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971. CrossRefPubMedGoogle Scholar
  34. 34.
    Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25. CrossRefGoogle Scholar
  35. 35.
    Hardie DG (2011) AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev 25:1895–1908. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Hardie DG (2014) AMPK—sensing energy while talking to other signaling pathways. Cell Metab 20:939–952. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bergeron R, Ren JM, Cadman KS, Moore IK, Perret P, Pypaert M, Young LH, Semenkovich CF et al (2001) Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis. Am J Physiol Endocrinol Metab 281:E1340–E1346CrossRefGoogle Scholar
  38. 38.
    Hutchinson DS, Summers RJ, Bengtsson T (2008) Regulation of AMP-activated protein kinase activity by G-protein coupled receptors: potential utility in treatment of diabetes and heart disease. Pharmacol Ther 119:291–310. CrossRefPubMedGoogle Scholar
  39. 39.
    Gascon S, Murenu E, Masserdotti G, Ortega F, Russo GL, Petrik D, Deshpande A, Heinrich C et al (2016) Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 18:396–409. CrossRefPubMedGoogle Scholar
  40. 40.
    Ravni A, Eiden LE, Vaudry H, Gonzalez BJ, Vaudry D (2006) Cycloheximide treatment to identify components of the transitional transcriptome in PACAP-induced PC12 cell differentiation. J Neurochem 98:1229–1241. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Seaborn T, Ravni A, Au R, Chow BK, Fournier A, Wurtz O, Vaudry H, Eiden LE et al (2014) Induction of Serpinb1a by PACAP or NGF is required for PC12 cells survival after serum withdrawal. J Neurochem. CrossRefGoogle Scholar
  42. 42.
    Manecka DL, Lelievre V, Anouar Y (2014) Inhibition of constitutive TNF production is associated with PACAP-mediated differentiation in PC12 cells. FEBS Lett 588:3008–3014. CrossRefPubMedGoogle Scholar
  43. 43.
    Manecka DL, Mahmood SF, Grumolato L, Lihrmann I, Anouar Y (2013) Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes both survival and neuritogenesis in PC12 cells through activation of nuclear factor kappaB (NF-kappaB) pathway: involvement of extracellular signal-regulated kinase (ERK), calcium, and c-REL. J Biol Chem 288:14936–14948. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kienlen Campard P, Crochemore C, Rene F, Monnier D, Koch B, Loeffler JP (1997) PACAP type I receptor activation promotes cerebellar neuron survival through the cAMP/PKA signaling pathway. DNA Cell Biol 16:323–333CrossRefGoogle Scholar
  45. 45.
    Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BK et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357. CrossRefPubMedGoogle Scholar
  46. 46.
    Scarpulla RC (2006) Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 97:673–683. CrossRefPubMedGoogle Scholar
  47. 47.
    Hardie DG (2011) Sensing of energy and nutrients by AMP-activated protein kinase. Am J Clin Nutr 93:891S–8896S. CrossRefGoogle Scholar
  48. 48.
    Vazquez-Manrique RP, Farina F, Cambon K, Dolores Sequedo M, Parker AJ, Millan JM, Weiss A, Deglon N et al (2016) AMPK activation protects from neuronal dysfunction and vulnerability across nematode, cellular and mouse models of Huntington’s disease. Hum Mol Genet 25:1043–1058. CrossRefPubMedGoogle Scholar
  49. 49.
    Williams T, Courchet J, Viollet B, Brenman JE, Polleux F (2011) AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci U S A 108:5849–5854. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dulovic M, Jovanovic M, Xilouri M, Stefanis L, Harhaji-Trajkovic L, Kravic-Stevovic T, Paunovic V, Ardah MT et al (2014) The protective role of AMP-activated protein kinase in alpha-synuclein neurotoxicity in vitro. Neurobiol Dis 63:1–11. CrossRefPubMedGoogle Scholar
  51. 51.
    Dasgupta B, Milbrandt J (2007) Resveratrol stimulates AMP kinase activity in neurons. Proc Natl Acad Sci U S A 104:7217–7222. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dasgupta B, Milbrandt J (2009) AMP-activated protein kinase phosphorylates retinoblastoma protein to control mammalian brain development. Dev Cell 16:256–270. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Stetler RA, Leak RK, Yin W, Zhang L, Wang S, Gao Y, Chen J (2012) Mitochondrial biogenesis contributes to ischemic neuroprotection afforded by LPS pre-conditioning. J Neurochem 123(Suppl 2):125–137. CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M (2011) AMP-activated protein kinase: a potential player in Alzheimer’s disease. J Neurochem 118:460–474. CrossRefPubMedGoogle Scholar
  55. 55.
    Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103. CrossRefPubMedGoogle Scholar
  56. 56.
    Shaw MM, Gurr WK, McCrimmon RJ, Schorderet DF, Sherwin RS (2007) 5′AMP-activated protein kinase alpha deficiency enhances stress-induced apoptosis in BHK and PC12 cells. J Cell Mol Med 11:286–298. CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286:81–89CrossRefGoogle Scholar
  58. 58.
    Cam H, Balciunaite E, Blais A, Spektor A, Scarpulla RC, Young R, Kluger Y, Dynlacht BD (2004) A common set of gene regulatory networks links metabolism and growth inhibition. Mol Cell 16:399–411. CrossRefPubMedGoogle Scholar
  59. 59.
    Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzym Regul 46:113–140. CrossRefGoogle Scholar
  60. 60.
    Miyamoto N, Izumi H, Miyamoto R, Kondo H, Tawara A, Sasaguri Y, Kohno K (2011) Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Invest Ophthalmol Vis Sci 52:1055–1063. CrossRefPubMedGoogle Scholar
  61. 61.
    Chang C, Wu G, Gao P, Yang L, Liu W, Zuo J (2014) Upregulated Parkin expression protects mitochondrial homeostasis in DJ-1 knockdown cells and cells overexpressing the DJ-1 L166P mutation. Mol Cell Biochem 387:187–195. CrossRefPubMedGoogle Scholar
  62. 62.
    Huo L, Scarpulla RC (2001) Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 21:644–654. CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236. CrossRefPubMedGoogle Scholar
  64. 64.
    Becker TS, Burgess SM, Amsterdam AH, Allende ML, Hopkins N (1998) Not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. Development 125:4369–4378PubMedGoogle Scholar
  65. 65.
    DeSimone SM, White K (1993) The Drosophila erect wing gene, which is important for both neuronal and muscle development, encodes a protein which is similar to the sea urchin P3A2 DNA binding protein. Mol Cell Biol 13:3641–3649CrossRefGoogle Scholar
  66. 66.
    Chang WT, Chen HI, Chiou RJ, Chen CY, Huang AM (2005) A novel function of transcription factor alpha-Pal/NRF-1: increasing neurite outgrowth. Biochem Biophys Res Commun 334:199–206. CrossRefPubMedGoogle Scholar
  67. 67.
    Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4:1023–1034CrossRefGoogle Scholar
  68. 68.
    Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19. CrossRefPubMedGoogle Scholar
  69. 69.
    Collins SP, Reoma JL, Gamm DM, Uhler MD (2000) LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem J 345(Pt 3):673–680CrossRefGoogle Scholar
  70. 70.
    Vaudry D, Gonzalez BJ, Basille M, Anouar Y, Fournier A, Vaudry H (1998) Pituitary adenylate cyclase-activating polypeptide stimulates both c-fos gene expression and cell survival in rat cerebellar granule neurons through activation of the protein kinase A pathway. Neuroscience 84:801–812CrossRefGoogle Scholar
  71. 71.
    Onoue S, Endo K, Ohshima K, Yajima T, Kashimoto K (2002) The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23:1471–1478CrossRefGoogle Scholar
  72. 72.
    Frodin M, Peraldi P, Van Obberghen E (1994) Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem 269:6207–6214Google Scholar
  73. 73.
    Villalba M, Bockaert J, Journot L (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci 17:83–90CrossRefGoogle Scholar
  74. 74.
    Emery AC, Eiden LE (2012) Signaling through the neuropeptide GPCR PAC(1) induces neuritogenesis via a single linear cAMP- and ERK-dependent pathway using a novel cAMP sensor. FASEB J 26:3199–3211. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN et al (2010) Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev 24:2517–2530. CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Spencer VA, Sun JM, Li L, Davie JR (2003) Chromatin immunoprecipitation: a tool for studying histone acetylation and transcription factor binding. Methods 31:67–75CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Houssni Abid
    • 1
    • 2
  • Dorthe Cartier
    • 1
    • 2
  • Abdallah Hamieh
    • 1
    • 2
  • Anne-Marie François-Bellan
    • 3
  • Christine Bucharles
    • 1
    • 2
  • Hugo Pothion
    • 1
    • 2
  • Destiny-Love Manecka
    • 1
    • 2
  • Jérôme Leprince
    • 1
    • 2
  • Sahil Adriouch
    • 2
    • 4
  • Olivier Boyer
    • 2
    • 4
  • Youssef Anouar
    • 1
    • 2
  • Isabelle Lihrmann
    • 1
    • 2
    Email author
  1. 1.UNIROUEN, Inserm U1239, Neuronal and Neuroendocrine Differentiation and Communication LaboratoryRouen-Normandie UniversityMont-Saint-AignanFrance
  2. 2.Institute for Research and Innovation in BiomedicineRouenFrance
  3. 3.CNRS UMR 7051, Neurophysiopathol InstAix-Marseille University13015 MarseilleFrance
  4. 4.UNIROUEN, Inserm U1234, Pathophysiology and Biotherapy of Inflammatory and Autoimmune DiseasesRouen-Normandie UniversityRouenFrance

Personalised recommendations