Advertisement

Neuron-Type Specific Loss of CDKL5 Leads to Alterations in mTOR Signaling and Synaptic Markers

  • Ethan Schroeder
  • Li Yuan
  • Eunju Seong
  • Cheryl Ligon
  • Nicholas DeKorver
  • C.B. Gurumurthy
  • Jyothi Arikkath
Article

Abstract

CDKL5 disorder is a devastating neurodevelopmental disorder associated with epilepsy, developmental retardation, autism, and related phenotypes. Mutations in the CDKL5 gene, encoding CDKL5, have been identified in this disorder. CDKL5 is a protein with homology to the serine-threonine kinases and incompletely characterized function. We generated and validated a murine model bearing a floxed allele of CDKL5 and polyclonal antibodies to CDKL5. CDKL5 is well expressed in the cortex, hippocampus, and striatum, localized to synaptosomes and nuclei and developmentally regulated in the hippocampus. Using Cre-mediated mechanisms, we deleted CDKL5 from excitatory CaMKIIα-positive neurons or inhibitory GABAergic neurons. Our data indicate that loss of CDKL5 in excitatory neurons of the cortex or inhibitory neurons of the striatum differentially alters expression of some components of the mechanistic target of rapamycin (mTOR) signaling pathway. Further loss of CDKL5 in excitatory neurons of the cortex or inhibitory neurons of the striatum leads to alterations in levels of synaptic markers in a neuron-type specific manner. Taken together, these data support a model in which loss of CDKL5 alters mTOR signaling and synaptic compositions in a neuron-type specific manner and suggest that CDKL5 may have distinct functional roles related to cellular signaling in excitatory and inhibitory neurons. Thus, these studies provide new insights into the biology of CDKL5 and suggest that the molecular pathology in CDKL5 disorder may have distinct neuron-type specific origins and effects.

Keywords

CDKL5 mTOR Synaptic Signaling CDKL5 disorder 

Notes

Funding Information

Research in the Arikkath Lab has been supported by start-up funds from the Munroe-Meyer Institute and grants from The Nebraska Research Initiative, an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number 5P20GM103471-10, the Nebraska EPSCoR (EPS-1004094), RO3 from the National Institutes of Health (1R03MH110726-01), and the Brain and Behavior Research Foundation (no. 21080). Ethan Schroeder and Li Yuan were partly supported by graduate student fellowships from the University of Nebraska Medical Center and Nicholas DeKorver was supported by a grant from the National Institutes of Health (AG031158). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with Ethical Standards

All animal experiments were approved by Institutional Animal Care and Use Committee of the University of Nebraska Medical Center.

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Posar A, Faggioli R, Visconti P (2015) Neurobehavioral phenotype in cyclin-dependent kinase-like 5 syndrome: case report and review of literature. J Pediatr Neurosci 10(3):258–260.  https://doi.org/10.4103/1817-1745.165685 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bodian DL, Schreiber JM, Vilboux T, Khromykh A, Hauser NS (2018) Mutation in an alternative transcript of CDKL5 in a boy with early onset seizures. Cold Spring Harb Mol Case Stud 4:a002360.  https://doi.org/10.1101/mcs.a002360 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kilstrup-Nielsen C, Rusconi L, La Montanara P, Ciceri D, Bergo A, Bedogni F, Landsberger N (2012) What we know and would like to know about CDKL5 and its involvement in epileptic encephalopathy. Neural Plast 2012:728267–728211.  https://doi.org/10.1155/2012/728267 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    La Montanara P, Rusconi L, Locarno A, Forti L, Barbiero I, Tramarin M, Chandola C, Kilstrup-Nielsen C et al (2015) Synaptic synthesis, dephosphorylation, and degradation: a novel paradigm for an activity-dependent neuronal control of CDKL5. J Biol Chem 290(7):4512–4527.  https://doi.org/10.1074/jbc.M114.589762 CrossRefPubMedGoogle Scholar
  5. 5.
    Ricciardi S, Ungaro F, Hambrock M, Rademacher N, Stefanelli G, Brambilla D, Sessa A, Magagnotti C et al (2012) CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons. Nat Cell Biol 14(9):911–923.  https://doi.org/10.1038/ncb2566 CrossRefPubMedGoogle Scholar
  6. 6.
    Zhu YC, Li D, Wang L, Lu B, Zheng J, Zhao SL, Zeng R, Xiong ZQ (2013) Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development. Proc Natl Acad Sci U S A 110(22):9118–9123.  https://doi.org/10.1073/pnas.1300003110 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Okuda K, Kobayashi S, Fukaya M, Watanabe A, Murakami T, Hagiwara M, Sato T, Ueno H et al (2017) CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility. Neurobiol Dis 106:158–170.  https://doi.org/10.1016/j.nbd.2017.07.002 CrossRefPubMedGoogle Scholar
  8. 8.
    Tramarin M, Rusconi L, Pizzamiglio L, Barbiero I, Peroni D, Scaramuzza L, Guilliams T, Cavalla D et al (2018) The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5. Hum Mol Genet 27(12):2052–2063.  https://doi.org/10.1093/hmg/ddy108 CrossRefPubMedGoogle Scholar
  9. 9.
    Nawaz MS, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, Alberio T, Landsberger N et al (2016) CDKL5 and Shootin1 interact and concur in regulating neuronal polarization. PLoS One 11(2):e0148634.  https://doi.org/10.1371/journal.pone.0148634 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Barbiero I, Peroni D, Tramarin M, Chandola C, Rusconi L, Landsberger N, Kilstrup-Nielsen C (2017) The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5-IQGAP1 complex. Hum Mol Genet 26(18):3520–3530.  https://doi.org/10.1093/hmg/ddx237 CrossRefPubMedGoogle Scholar
  11. 11.
    Ricciardi S, Kilstrup-Nielsen C, Bienvenu T, Jacquette A, Landsberger N, Broccoli V (2009) CDKL5 influences RNA splicing activity by its association to the nuclear speckle molecular machinery. Hum Mol Genet 18(23):4590–4602.  https://doi.org/10.1093/hmg/ddp426 CrossRefPubMedGoogle Scholar
  12. 12.
    Pizzo R, Gurgone A, Castroflorio E, Amendola E, Gross C, Sassoe-Pognetto M, Giustetto M (2016) Lack of Cdkl5 disrupts the organization of excitatory and inhibitory synapses and parvalbumin interneurons in the primary visual cortex. Front Cell Neurosci 10:261.  https://doi.org/10.3389/fncel.2016.00261 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, Michele Ratto G, Amendola E, Gross CT et al (2016) Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1. Biol Psychiatry 80(4):302–311.  https://doi.org/10.1016/j.biopsych.2015.08.028 CrossRefPubMedGoogle Scholar
  14. 14.
    Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, Amendola E, Gross C, Calza L et al (2014) Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3beta signaling. Neurobiol Dis 70:53–68.  https://doi.org/10.1016/j.nbd.2014.06.006 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang IT, Allen M, Goffin D, Zhu X, Fairless AH, Brodkin ES, Siegel SJ, Marsh ED et al (2012) Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A 109(52):21516–21521.  https://doi.org/10.1073/pnas.1216988110 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Tang S, Wang IJ, Yue C, Takano H, Terzic B, Pance K, Lee JY, Cui Y et al (2017) Loss of CDKL5 in glutamatergic neurons disrupts hippocampal microcircuitry and leads to memory impairment in mice. J Neurosci 37(31):7420–7437.  https://doi.org/10.1523/JNEUROSCI.0539-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lo Martire V, Alvente S, Bastianini S, Berteotti C, Silvani A, Valli A, Viggiano R, Ciani E et al (2017) CDKL5 deficiency entails sleep apneas in mice. J Sleep Res 26(4):495–497.  https://doi.org/10.1111/jsr.12512 CrossRefPubMedGoogle Scholar
  18. 18.
    Del Pino I, Rico B, Marin O (2018) Neural circuit dysfunction in mouse models of neurodevelopmental disorders. Curr Opin Neurobiol 48:174–182.  https://doi.org/10.1016/j.conb.2017.12.013 CrossRefPubMedGoogle Scholar
  19. 19.
    Yuskaitis CJ, Jones BM, Wolfson RL, Super CE, Dhamne SC, Rotenberg A, Sabatini DM, Sahin M et al (2018) A mouse model of DEPDC5-related epilepsy: neuronal loss of Depdc5 causes dysplastic and ectopic neurons, increased mTOR signaling, and seizure susceptibility. Neurobiol Dis 111:91–101.  https://doi.org/10.1016/j.nbd.2017.12.010 CrossRefPubMedGoogle Scholar
  20. 20.
    Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291.  https://doi.org/10.1016/j.neuron.2014.09.034 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E et al (2014) Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83(5):1131–1143.  https://doi.org/10.1016/j.neuron.2014.07.040 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87(4):684–698.  https://doi.org/10.1016/j.neuron.2015.07.033 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Contractor A, Klyachko VA, Portera-Cailliau C (2015) Altered neuronal and circuit excitability in fragile X syndrome. Neuron 87(4):699–715.  https://doi.org/10.1016/j.neuron.2015.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hector RD, Dando O, Landsberger N, Kilstrup-Nielsen C, Kind PC, Bailey ME, Cobb SR (2016) Characterisation of CDKL5 transcript isoforms in human and mouse. PLoS One 11(6):e0157758.  https://doi.org/10.1371/journal.pone.0157758 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gertsenstein M, Nutter LM, Reid T, Pereira M, Stanford WL, Rossant J, Nagy A (2010) Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS One 5(6):e11260.  https://doi.org/10.1371/journal.pone.0011260 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Beaudoin GM III, Lee SH, Singh D, Yuan Y, Ng YG, Reichardt LF, Arikkath J (2012) Culturing pyramidal neurons from the early postnatal mouse hippocampus and cortex. Nat Protoc 7(9):1741–1754.  https://doi.org/10.1038/nprot.2012.099 CrossRefPubMedGoogle Scholar
  27. 27.
    Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169(2):361–371.  https://doi.org/10.1016/j.cell.2017.03.035 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Steinmetz AB, Stern SA, Kohtz AS, Descalzi G, Alberini CM (2018) Insulin-like growth factor II targets the mTOR pathway to reverse autism-like phenotypes in mice. J Neurosci 38(4):1015–1029.  https://doi.org/10.1523/JNEUROSCI.2010-17.2017 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Borrie SC, Brems H, Legius E, Bagni C (2017) Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways. Annu Rev Genomics Hum Genet 18:115–142.  https://doi.org/10.1146/annurev-genom-091416-035332 CrossRefPubMedGoogle Scholar
  30. 30.
    Taniguchi H, He M, Wu P, Kim S, Paik R, Sugino K, Kvitsiani D, Fu Y et al (2011) A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71(6):995–1013.  https://doi.org/10.1016/j.neuron.2011.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Amendola E, Zhan Y, Mattucci C, Castroflorio E, Calcagno E, Fuchs C, Lonetti G, Silingardi D et al (2014) Mapping pathological phenotypes in a mouse model of CDKL5 disorder. PLoS One 9(5):e91613.  https://doi.org/10.1371/journal.pone.0091613 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Sivilia S, Mangano C, Beggiato S, Giuliani A, Torricella R, Baldassarro VA, Fernandez M, Lorenzini L et al (2016) CDKL5 knockout leads to altered inhibitory transmission in the cerebellum of adult mice. Genes Brain Behav 15(5):491–502.  https://doi.org/10.1111/gbb.12292 CrossRefPubMedGoogle Scholar
  33. 33.
    Kameshita I, Sekiguchi M, Hamasaki D, Sugiyama Y, Hatano N, Suetake I, Tajima S, Sueyoshi N (2008) Cyclin-dependent kinase-like 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun 377(4):1162–1167.  https://doi.org/10.1016/j.bbrc.2008.10.113 CrossRefPubMedGoogle Scholar
  34. 34.
    Rusconi L, Kilstrup-Nielsen C, Landsberger N (2011) Extrasynaptic N-methyl-D-aspartate (NMDA) receptor stimulation induces cytoplasmic translocation of the CDKL5 kinase and its proteasomal degradation. J Biol Chem 286(42):36550–36558.  https://doi.org/10.1074/jbc.M111.235630 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen Q, Zhu YC, Yu J, Miao S, Zheng J, Xu L, Zhou Y, Li D et al (2010) CDKL5, a protein associated with Rett syndrome, regulates neuronal morphogenesis via Rac1 signaling. J Neurosci 30(38):12777–12786.  https://doi.org/10.1523/JNEUROSCI.1102-10.2010 CrossRefPubMedGoogle Scholar
  36. 36.
    Mari F, Azimonti S, Bertani I, Bolognese F, Colombo E, Caselli R, Scala E, Longo I et al (2005) CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 14(14):1935–1946.  https://doi.org/10.1093/hmg/ddi198 CrossRefPubMedGoogle Scholar
  37. 37.
    Sekiguchi M, Katayama S, Hatano N, Shigeri Y, Sueyoshi N, Kameshita I (2013) Identification of amphiphysin 1 as an endogenous substrate for CDKL5, a protein kinase associated with X-linked neurodevelopmental disorder. Arch Biochem Biophys 535(2):257–267.  https://doi.org/10.1016/j.abb.2013.04.012 CrossRefPubMedGoogle Scholar
  38. 38.
    Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J (2017) Molecular neurobiology of mTOR. Neuroscience 341:112–153.  https://doi.org/10.1016/j.neuroscience.2016.11.017 CrossRefPubMedGoogle Scholar
  39. 39.
    Huber KM, Klann E, Costa-Mattioli M, Zukin RS (2015) Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J Neurosci 35(41):13836–13842.  https://doi.org/10.1523/JNEUROSCI.2656-15.2015 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76(2):325–337.  https://doi.org/10.1016/j.neuron.2012.07.022 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yang L, Miao L, Liang F, Huang H, Teng X, Li S, Nuriddinov J, Selzer ME et al (2014) The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration. Nat Commun 5:5416.  https://doi.org/10.1038/ncomms6416 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Koscielny A, Malik AR, Liszewska E, Zmorzynska J, Tempes A, Tarkowski B, Jaworski J (2018) Adaptor complex 2 controls dendrite morphology via mTOR-dependent expression of GluA2. Mol Neurobiol 55(2):1590–1606.  https://doi.org/10.1007/s12035-017-0436-3 CrossRefPubMedGoogle Scholar
  43. 43.
    Dwyer JM, Maldonado-Aviles JG, Lepack AE, DiLeone RJ, Duman RS (2015) Ribosomal protein S6 kinase 1 signaling in prefrontal cortex controls depressive behavior. Proc Natl Acad Sci U S A 112(19):6188–6193.  https://doi.org/10.1073/pnas.1505289112 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, Schuman EM, Rosenblum K et al (2008) Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem 15(1):29–38.  https://doi.org/10.1101/lm.661908 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shen K, Sidik H, Talbot WS (2016) The Rag-Ragulator complex regulates lysosome function and phagocytic flux in microglia. Cell Rep 14(3):547–559.  https://doi.org/10.1016/j.celrep.2015.12.055 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brady OA, Diab HI, Puertollano R (2016) Rags to riches: amino acid sensing by the Rag GTPases in health and disease. Small GTPases 7(4):197–206.  https://doi.org/10.1080/21541248.2016.1218990 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Pu J, Keren-Kaplan T, Bonifacino JS (2017) A Ragulator-BORC interaction controls lysosome positioning in response to amino acid availability. J Cell Biol 216(12):4183–4197.  https://doi.org/10.1083/jcb.201703094 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Nikoletopoulou V, Tavernarakis N (2018) Regulation and roles of autophagy at synapses. Trends Cell Biol 28:646–661.  https://doi.org/10.1016/j.tcb.2018.03.006 CrossRefPubMedGoogle Scholar
  49. 49.
    Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, Liu H, Xiong H et al (2016) Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol 215(2):245–258.  https://doi.org/10.1083/jcb.201605065 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jhang CL, Huang TN, Hsueh YP, Liao W (2017) Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors. Hum Mol Genet 26(20):3922–3934.  https://doi.org/10.1093/hmg/ddx279 CrossRefPubMedGoogle Scholar
  51. 51.
    Fuchs C, Gennaccaro L, Trazzi S, Bastianini S, Bettini S, Martire VL, Ren E, Medici G et al (2018) Heterozygous CDKL5 knockout female mice are a valuable animal model for CDKL5 disorder. Neural Plast 2018:9726950–9726918.  https://doi.org/10.1155/2018/9726950 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pastuzyn ED, Shepherd JD (2017) Activity-dependent arc expression and homeostatic synaptic plasticity are altered in neurons from a mouse model of Angelman syndrome. Front Mol Neurosci 10:234.  https://doi.org/10.3389/fnmol.2017.00234 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Developmental Neuroscience, Munroe-Meyer InstituteUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations