Molecular Neurobiology

, Volume 56, Issue 4, pp 3024–3037 | Cite as

Modulation of Glucose Metabolism in Hippocampal Neurons by Adiponectin and Resistin

  • Pedro CisternasEmail author
  • Milka Martinez
  • Rexford S. Ahima
  • G. William Wong
  • Nibaldo C. InestrosaEmail author


Obese individuals exhibit altered circulating levels of adipokines, the proteins secreted by adipose tissue to mediate tissue cross-talk and regulate appetite and energy expenditure. The effect of adipokines on neuronal glucose metabolism, however, remains largely unknown. Two adipokines produced in adipose tissue, adiponectin and resistin, can gain access to the central nervous system (CNS), and their levels in the cerebrospinal fluid (CSF) are altered in obesity. We hypothesized that dysregulated adipokines in the CNS may underlie the reported link between obesity and higher risk of neurological disorders like Alzheimer’s disease (AD), by affecting glucose metabolism in hippocampal neurons. Using cultured primary rat hippocampal neurons and mouse hippocampus slices, we show that recombinant adiponectin and resistin, at a concentration found in the CSF, have opposing effects on glucose metabolism. Adiponectin enhanced glucose uptake, glycolytic rate, and ATP production through an AMP-activated protein kinase (AMPK)-dependent mechanism; inhibiting AMPK abrogated the effects of adiponectin on glucose uptake and utilization. In contrast, resistin reduced glucose uptake, glycolytic rate, and ATP production, in part, by inhibiting hexokinase (HK) activity in hippocampal neurons. These data suggest that altered CNS levels of adipokines in the context of obesity may impact glucose metabolism in hippocampal neurons, brain region involved in learning and memory functions.


Adiponectin Resistin Obesity Glucose metabolism Hippocampus Brain functions 


Author Contributions

Conceived and designed the experiments: P.C. and N.C.I. Performed the experiments: P.C. and M.M. Analyzed the data: P.C., R.S.A., G.W.W., and N.C.I. Contributed reagents/materials/analysis tools: N.C.I. Wrote the manuscript: P.C., G.W.W., and N.C.I.

Funding Information

This work was supported by grants from the Basal Center of Excellence in Aging and Regeneration (CONICYT-AFB 170005) to N.C.I., FONDECYT (no. 1160724) to N.C.I., FONDECYT (no. 11160651) to P.C, and the National Institute of Health (DK084171) to G.W.W. We also thank the Sociedad Química y Minera de Chile (SQM) for the special grants “The role of K+ on Hypertension and Cognition” and “The role of Lithium in Human Health and Disease”.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Gustafson DR (2012) Adiposity and cognitive decline: Underlying mechanisms. J Alzheimers Dis 30:S97–S112. CrossRefPubMedGoogle Scholar
  2. 2.
    Rios JA, Cisternas P, Arrese M et al (2014) Is Alzheimer’s disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 121:125–146. CrossRefPubMedGoogle Scholar
  3. 3.
    Cisternas P, Salazar P, Serrano FG, Montecinos-Oliva C, Arredondo SB, Varela-Nallar L, Barja S, Vio CP et al (2015) Fructose consumption reduces hippocampal synaptic plasticity underlying cognitive performance. Biochim Biophys Acta Mol Basis Dis 1852:2379–2390. CrossRefGoogle Scholar
  4. 4.
    Hruby A, Hu FB (2016) HHS public access. Pharmacoeconomics 33:673–689. CrossRefGoogle Scholar
  5. 5.
    Apovian CM (2016) The obesity epidemic—understanding the disease and the treatment. N Engl J Med 374:177–179. CrossRefPubMedGoogle Scholar
  6. 6.
    Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, Ben-Ami Shor D, Tzur D et al (2016) Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med 374:2430–2440. CrossRefPubMedGoogle Scholar
  7. 7.
    Trayhurn P, Bing C, Wood IS (2006) The WALTHAM International Nutritional Sciences Symposia Adipose tissue and adipokines—energy regulation from the society1935–1939Google Scholar
  8. 8.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gupta RK, Rosen ED, Spiegelman BM (2011) Identifying novel transcriptional components controlling energy metabolism. Cell Metab 14:739–745. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Fasshauer M, Blüher M (2015) Adipokines in health and disease. Trends Pharmacol Sci 36:461–470. CrossRefPubMedGoogle Scholar
  11. 11.
    Kos K, Harte AL, Da Silva NF et al (2007) Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. J Clin Endocrinol Metab 92:1129–1136. CrossRefPubMedGoogle Scholar
  12. 12.
    Kusminski CM, McTernan PG, Schraw T et al (2007) Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia 50:634–642. CrossRefPubMedGoogle Scholar
  13. 13.
    Kiliaan AJ, Arnoldussen IAC, Gustafson DR (2014) Adipokines: a link between obesity and dementia? Lancet Neurol 13:913–923. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bischof GN, Park DC (2015) Obesity and aging: consequences for cognition, brain structure, and brain function. Psychosom Med 77:697–709. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ingelsson E, Risérus U, Berne C, Frystyk J, Flyvbjerg A, Axelsson T, Lundmark P, Zethelius B (2006) Adiponectin and risk of congestive heart failure. J Am Med Assoc 295:1772–1774Google Scholar
  16. 16.
    Yang Y, Hu W, Jiang S, Wang B, Li Y, Fan C, di S, Ma Z et al (2015) The emerging role of adiponectin in cerebrovascular and neurodegenerative diseases. Biochim Biophys Acta 1852:1887–1894. CrossRefPubMedGoogle Scholar
  17. 17.
    Song J, Choi S, Kim BC (2017) Adiponectin regulates the polarization and function of microglia via ppar- γ signaling under amyloid β toxicity. Front Cell Neurosci 11:64. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE (2006) Brain adipocytokine action and metabolic regulation. Diabetes 55:145–154. CrossRefGoogle Scholar
  19. 19.
    Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: More than just another fat cell hormone? Diabetes Care 26:2442–2450CrossRefGoogle Scholar
  20. 20.
    Sowers JR (2008) Endocrine functions of adipose tissue: focus on adiponectin. Clin Cornerstone 9:32–40. CrossRefPubMedGoogle Scholar
  21. 21.
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T et al (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 7:941–946. CrossRefPubMedGoogle Scholar
  22. 22.
    Zhao L, Fu Z, Wu J, Aylor KW, Barrett EJ, Cao W, Liu Z (2015) Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses. J Physiol 593:4067–4079. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Muse E, Lam T, Scherer P, Rossetti L (2007) Hypothalamic resistin induces hepatic insulin resistance. J Clin Invest 117:1670–1678. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Steppan CM, Lazar MA (2004) The current biology of resistin. J Intern Med 255:439–447. CrossRefPubMedGoogle Scholar
  25. 25.
    Rajala MW, Obici S, Scherer PE, Rossetti L (2003) Adipose-derived resistin and gut-derived resistin-like molecule? Selectively impair insulin action on glucose production. J Clin Invest 111:225–230. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Steppan CM, Bailey ST, Bhat S et al (2001) News/The hormone resistin links obesity to diabetes. Nature 409(6818):307–312CrossRefGoogle Scholar
  27. 27.
    Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS et al (2001) The hormone resistin links obesity to diabetes. Nature 409:307–312. CrossRefPubMedGoogle Scholar
  28. 28.
    Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG et al (2001) A family of tissue-specific resistin-like molecules. Proc Natl Acad Sci 98:502–506. CrossRefPubMedGoogle Scholar
  29. 29.
    Attwell D, Laughlin SB (2001) An energy budget for signaling in the grey matter of the brain. J Cereb Blood Flow Metab 21:1133–1145. CrossRefPubMedGoogle Scholar
  30. 30.
    Harris JJ, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75:762–777. CrossRefPubMedGoogle Scholar
  31. 31.
    Cisternas P, Inestrosa NC (2017) Brain glucose metabolism: role of Wnt signaling in the metabolic impairment in Alzheimer’s disease. Neurosci Biobehav Rev 80:316–328. CrossRefPubMedGoogle Scholar
  32. 32.
    Emmerzaal TL, Kiliaan AJ, Gustafson DR (2015) 2003-2013: a decade of body mass index, Alzheimer’s disease, and dementia. J Alzheimers Dis 43:739–755. CrossRefPubMedGoogle Scholar
  33. 33.
    Arrazola MS, Varela-Nallar L, Colombres M et al (2009) Calcium/calmodulin-dependent protein kinase type IV is a target gene of the Wnt/beta-catenin signaling pathway. J Cell Physiol 221:658–667. CrossRefPubMedGoogle Scholar
  34. 34.
    Cerpa W, Farias GG, Godoy JA et al (2010) Wnt-5a occludes Abeta oligomer-induced depression of glutamatergic transmission in hippocampal neurons. Mol Neurodegener 5:3. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cisternas P, Salazar P, Silva-Álvarez C, Barros LF, Inestrosa NC (2016) Activation of Wnt signaling in cortical neurons enhances glucose utilization through glycolysis. J Biol Chem 291:25950–25964. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cisternas P, Silva-Alvarez C, Martínez F et al (2014) The oxidized form of vitamin C, dehydroascorbic acid, regulates neuronal energy metabolism. J Neurochem 129:663–671. CrossRefPubMedGoogle Scholar
  37. 37.
    Barros LF, Bittner CX, Loaiza A et al (2009) Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. J Neurochem 109(Suppl):94–100. CrossRefPubMedGoogle Scholar
  38. 38.
    Herrero-Mendez A, Almeida A, Fernandez E et al (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752. CrossRefPubMedGoogle Scholar
  39. 39.
    Bolaños JP, Delgado-Esteban M, Herrero-Mendez A, Fernandez-Fernandez S, Almeida A (2008) Regulation of glycolysis and pentose-phosphate pathway by nitric oxide: Impact on neuronal survival. Biochim Biophys Acta Bioenerg 1777:789–793. CrossRefGoogle Scholar
  40. 40.
    Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH (2011) Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer’s disease. Hum Mol Genet 20:4515–4529. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Moreno-Navarrete JM, Ortega FJ, Rodríguez-Hermosa JI et al (2011) OCT1 expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes 60:168–176. CrossRefPubMedGoogle Scholar
  42. 42.
    Stow LR, Jacobs ME, Wingo CS, Cain BD (2016) Endothelin—1 gene regulation. FASEB J 25:16–28. CrossRefGoogle Scholar
  43. 43.
    Thurley K, Herbst C, Wesener F, Koller B, Wallach T, Maier B, Kramer A, Westermark PO (2017) Principles for circadian orchestration of metabolic pathways. Proc Natl Acad Sci 114:1572–1577. CrossRefPubMedGoogle Scholar
  44. 44.
    Varela-Nallar L, Parodi J, Farias GG, Inestrosa NC (2012) Wnt-5a is a synaptogenic factor with neuroprotective properties against Abeta toxicity. Neurodegener Dis 10:23–26. CrossRefPubMedGoogle Scholar
  45. 45.
    Chen G, Chen KS, Knox J et al (2000) A learning de ® cit related to age and b -amyloid plaques in a mouse model of Alzheimer’s disease. Nature 408:975–979CrossRefGoogle Scholar
  46. 46.
    Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12:e426–e437. CrossRefPubMedGoogle Scholar
  47. 47.
    Jauch-Chara K, Oltmanns KM (2014) Obesity—a neuropsychological disease? Systematic review and neuropsychological model. Prog Neurobiol 114:4–101. CrossRefGoogle Scholar
  48. 48.
    Whitmer RA, Gunderson EP, Quesenberry CP Jr et al (2007) Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res 4:103–109. CrossRefPubMedGoogle Scholar
  49. 49.
    Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B, Fratiglioni L (2011) Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology 76:1568–1574. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ashrafian H, Harling L, Darzi A, Athanasiou T (2013) Neurodegenerative disease and obesity: what is the role of weight loss and bariatric interventions? Metab Brain Dis 28:341–353. CrossRefPubMedGoogle Scholar
  51. 51.
    Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R (2005) Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 111:1448–1454. CrossRefPubMedGoogle Scholar
  52. 52.
    Bhat NR (2010) Linking cardiometabolic disorders to sporadic Alzheimer’s disease: a perspective on potential mechanisms and mediators. J Neurochem 115:551–562. CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mitchell AC, Leak RK, Zigmond MJ, Cameron JL, Mirnics K (2012) Gene transcripts associated with BMI in the motor cortex and caudate nucleus of calorie restricted rhesus monkeys. Genomics 99:144–151. CrossRefPubMedGoogle Scholar
  54. 54.
    Huffman DM, Barzilai N (2009) Role of visceral adipose tissue in aging. Biochim Biophys Acta Gen Subj 1790:1117–1123. CrossRefGoogle Scholar
  55. 55.
    Sutinen EM, Pirttilä T, Anderson G, Salminen A, Ojala JO (2012) Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation 9:1–14. CrossRefGoogle Scholar
  56. 56.
    Gustafson DR (2010) Adiposity hormones and dementia. J Neurol Sci 299:30–34. CrossRefPubMedGoogle Scholar
  57. 57.
    Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I et al (2007) Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab 6:55–68. CrossRefPubMedGoogle Scholar
  58. 58.
    Thundyil J, Pavlovski D, Sobey CG, Arumugam TV (2012) Adiponectin receptor signalling in the brain. Br J Pharmacol 165:313–327. CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Ng RCL, Cheng OY, Jian M, Kwan JSC, Ho PWL, Cheng KKY, Yeung PKK, Zhou LL et al (2016) Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener 11:71. CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ng RCL, Chan KH (2017) Potential neuroprotective effects of adiponectin in Alzheimer’s disease. Int J Mol Sci 18:1–13. CrossRefGoogle Scholar
  61. 61.
    Giordano V, Peluso G, Iannuccelli M, Benatti P, Nicolai R, Calvani M (2007) Systemic and brain metabolic dysfunction as a new paradigm for approaching Alzheimer’s dementia. Neurochem Res 32:555–567CrossRefGoogle Scholar
  62. 62.
    Benomar Y, Gertler A, De Lacy P et al (2013) Central resistin overexposure induces insulin resistance through toll-like receptor 4. Diabetes 62:102–144. CrossRefPubMedGoogle Scholar
  63. 63.
    Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991. CrossRefPubMedGoogle Scholar
  64. 64.
    Fan H-Q, Gu N, Liu F et al (2007) Prolonged exposure to resistin inhibits glucose uptake in rat skeletal muscles. Acta Pharmacol Sin 28:410–416. CrossRefPubMedGoogle Scholar
  65. 65.
    Moon B, Kwan JJ-M, Duddy N, Sweeney G, Begum N (2003) Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab 285:E106–E115. CrossRefPubMedGoogle Scholar
  66. 66.
    Bednarska-Makaruk M, Graban A, Wiśniewska A, Łojkowska W, Bochyńska A, Gugała-Iwaniuk M, Sławińska K, Ługowska A et al (2017) Association of adiponectin, leptin and resistin with inflammatory markers and obesity in dementia. Biogerontology 18:561–580. CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zeisel A, Muñoz-Manchado AB, Codeluppi S et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Argente-Arizón P, Guerra-Cantera S, Garcia-Segura LM et al (2016) Glial cells and energy balance. J Mol Endocrinol.
  69. 69.
    Liu B, Teschemacher AG, Kasparov S (2017) Neuroprotective potential of astroglia. J Neurosci Res 95:2126–2139CrossRefGoogle Scholar
  70. 70.
    Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163CrossRefGoogle Scholar
  71. 71.
    Magistretti PJ, Sorg O, Naichen Y, Pellerin L, de Rham S, Martin JL (1994) Regulation of astrocyte energy metabolism by neurotransmitters. Ren Physiol Biochem 17:168–171PubMedGoogle Scholar
  72. 72.
    Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B (2010) Comment on recent modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab 30:1982–1986. CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Martin-Jiménez CA, Gaitán-Vaca DM, Echeverria V et al (2016) Relationship between obesity, Alzheimer’s disease, and Parkinson’s disease: an astrocentric view. Mol Neurobiol:1–20. CrossRefGoogle Scholar
  74. 74.
    Reger MA, Watson GS, Green PS et al (2008) Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology 70:440–448. CrossRefPubMedGoogle Scholar
  75. 75.
    Chapman CD, Frey WH, Craft S, Danielyan L, Hallschmid M, Schiöth HB, Benedict C (2013) Intranasal treatment of central nervous system dysfunction in humans. Pharm Res 30:2475–2484. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Division of Endocrinology, Diabetes & Metabolism, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Physiology and Center for Metabolism and Obesity ResearchJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of MedicineUniversity of New South WalesSydneyAustralia
  5. 5.Centro de Excelencia en Biomedicina de Magallanes (CEBIMA)Universidad de MagallanesPunta ArenasChile

Personalised recommendations